RC 造耐震壁の弾塑性マクロ解析モデルの構築

Development of Elasto-plastic Macroscopic Analytical Models for RC Shear Walls

○藤田有希子¹, 山根康孝¹, 田嶋和樹², 白井伸明² * Yukiko Fujita¹, Yasutaka Yamane¹, Kazuki Tajima², Nobuaki Shirai²

Abstract: A simple elasto-plastic model for RC shear walls applicable to the frame analysis was developed. Static cyclic analyses on the RC shear walls were carried out with two kind of the macro-models; "three-vertical-line-element model" and "multi-uniaxial-element in parallel model". Although both analytical models gave equally good predictions, it seems that from the viewpoint of simplicity, the multi-uniaxial-element in parallel model is better recommended.

1. はじめに

鉄筋コンクリート(以下, RC)造建物における RC 造耐震壁は,地震動により生じる水平荷重に対して剛 性および耐力を付与するのに有効な耐震部材である. また,耐震補強においても RC 造壁を増設する耐震壁 補強は数多く採用されている工法である.

本研究の目的は、今後想定される大地震に備えて、 既補強の RC 造建物の安全性を検証することである. その手法として、補強スパン並びに既存 RC 造架構に 対する適切な解析モデルを設定し、地震応答解析に基 づく耐震性能評価手法を構築する.本論文では、マク ロ手法による RC 耐震壁のモデル化の構築を試みる. なお、解析には、数値解析コード OpenSees^[1]を用いた.

2. 解析モデルの構築

2.1. 解析対象実験概要

Vellenas ら^[2]の実験における 1/3 縮尺試験体 4 体のう ち,10 層の原型建物に対して設計した骨組付き壁の下 部 3 層を理想化した試験体 4 を対象とする (Fig.1). 軸 力およびモーメント/せん断力比(M/V)は一定と仮定 され,繰返し荷重が作用された.

2.2. 解析モデル概要

2つの弾塑性マクロ解析モデルを用いて検討を行う.1 つ目は, 壁谷澤ら^[3]による鉛直 3 成分要素モデル

(TVLEM:Three-Vertical-Line-Element-Model) であり、 構造設計に多く採用されている一般的な解析モデルで ある.TVLEM は、上部と下部床レベルに無限に剛な はりを有する3鉛直線分要素として包括的壁部材を理 想化している(Fig.2 (a)).2本の外側要素は境界柱の 軸剛性を表現し、中央要素はそれぞれ骨組付き壁のせ ん断剛性、中央パネルの鉛直軸剛性と曲げ剛性を表す 水平・鉛直および回転剛性により構成される1成分モ デルである.2つ目は、Valucanoら^[4]によって提案され

1:日大理工・院(前)・建築 2:日大理工・教員・建築

た複数一軸並列モデル(MVLEM: multi-uniaxial-element in parallel model) である. MVLEM は、中央パネルの 回転バネの代わりに内側要素として複数の垂直バネを 用いることで曲げ剛性を表している(Fig.2 (b)).本論 文においては、内側要素を2要素、相対的な回転中心 を規定する c を 0.4 とした.両モデル化手法を解析対 象試験体に適用し、実験と同様に繰返し荷重を載荷す るが、Fig.3 には代表して MVLEM の適用例を示す. 2.3. 復元力特性および材料構成則

軸バネの復元力特性は, Fig. 4, 5 に示すコンクリー トおよび鉄筋の σ-ε 関係と各断面の負担面積との積に より決定した.境界柱のコアコンクリートに対しては Mander^[5]の拘束効果を適用した.また,鉄筋の降伏後 の二次勾配は初期剛性の 1/100 とした.壁谷澤ら^[3]は TMLEM に対して実験結果に基づく経験則といくつか の仮定により定義した軸剛性履歴モデルを用いている.

しかし、軸剛性履歴モデルのパラメータを定義可能な 洗練された手法が必要である⁶⁰という指摘がされてい ることから、本解析モデルでは材料非線形性を用いた 復元力特性とした.

回転バネの復元力特性は、曲げひび割れおよび曲げ 降伏を考慮した Tri-Linear 型モデルとし, 中央パネルの みのファイバーモデルによる断面解析によって決定し た. なお,降伏点以降の勾配は,初期剛性の1/1000と 仮定した.履歴は原点指向型モデルとした.

せん断バネの復元力特性は、せん断ひび割れ点(V。) およびせん断終局点(Vu)を考慮した Tri-Linear 型モデル ^[6]とし,履歴は原点指向型モデルとした(Fig.6).

3. 解析結果

実験および解析のベースシアー頂部変形関係を Fig.7 に示す. 両モデルの解析結果に若干の違いはある ものの、実験結果の骨格および履歴形状と良好な対応 を示している. MVLEM は、中央パネルと境界柱の変 形の適合性が欠如するという TVLEM の問題点が修正 されたモデルである.また,回転バネの復元力特性を 決定するための断面解析を行う必要がなく、簡易にモ デル化が行えるという利点があるため, MVLEM の汎 用性は高いと考えられる.

4. まとめ

RC造耐震壁の弾塑性マクロ解析モデルとして鉛直3 成分要素モデルと複数一軸並列モデルをベースとした モデルの繰返し解析を行った. 両解析モデルにおいて 実験結果と良い対応を示したことから、より簡便なモ デルである複数一軸並列モデルの汎用性は高いと考え られる.

5. 参考文献

[1] Open System for Earthquake Engineering Simulation -HomePage, http://opensees.berkeley.edu/

[2] Jose Miguel Vallenas et al. : "Hystereteic Behavior of Reinforced Concrete Structural Walls", UCB/EERC-79/20, 1979.8

[3] Toshimi Kabeyasawa et al. : "U.S.-Japan Cooperative Reseach on RC Full-Scale Building Test - Part 5:Discussion on Dynamic Response System, 8th World Conference on Earthquake Engineering, vol.6, 1984

[4] Alfonso Vulcano et al : "Analytical Modelling of R/CStructual Walls", 9th World Conference on Earthquake Engineering, vol.7, 1988.8

434kN

[6] Alfonso Vulcano et al: "Analytical Models for Predicting the Lateral Response of RC Shear Walls: Evaluation of Their Reliability", UCB/EERC-87/19, 1987.11

【謝辞】

本研究の一部は科学研究費補助金(基盤研究(C),代表 者:白井伸明)の助成を受けて行われたものである.