免震構造物の安全余裕度に関する基礎的研究

上部構造を弾塑性モデルとした場合における応答特性

Basic study on safety margin for base-isolated structure

The response characteristics in a case where it is assumed that elastic-plastic model superstructure

○玉木龍², 古橋剛¹ Ryu Tamaki², Takeshi Furuhashi¹

In this paper, response in the case of elasto-plastic model in base isolated structure is analyzed and its characteristics are studied. First, analyzed models are made. Second, seismic waves such as El-Centro 1940 NS and JMA KOBE NS are inputted to each models. So, responses of each models are analyzed.

<u>1. はじめに</u>

免震構造物における免震層は変形性能にある程度の 余裕があり,設計レベルを超える地震動が入力された 際にも免震性能は大きく変化しない.一方で、上部構 造は設計レベルを超える地震力が入力され,免震層の 応答が増大した場合の応答特性については不明確な点 が多いのが現状である.

また免震構造物における上部構造は極めて稀な地震 動に対し,弾性限界内で設計されるのが一般的である が,経済性等の考慮により限界付近で設計されること も少なくない.

以上の観点から免震層の応答変形が増大した際に, 上部構造の応答にどれほど影響を与えるかについて考 察し, 危険性を把握することが重要であるといえる.

そこで本研究は免震構造の上部構造の塑性化に着目 し、上部構造塑性化後の傾向や危険性を把握すること を目的とする. なお免震層のハードニングやクリアラ ンスに関する問題はないと仮定し、以後解析を行う.

2. 設計用地震力

現行の設計では, 予備解析から求めら れる最大応答値から 層せん断力係数を算 出し,算出された層 せん断力係数を包絡 するように設計用地 震力を決定している. 3.検討モデル

Figure-1 Design procedure

以上を踏まえ本研究は,設計における最低限度の基 準を満たした上部構造の弾性限変形を持つモデルを作 成し,検討を行う.なお,モデルは上部構造9質点に 免震層を加えた,計10質点のせん断型質点系モデル により検討を行う.上部構造の諸元及び固有値解析結

1:日大理工・教員・建築 2:日大理工・院・建築学

果を Table-1 及び Table-2 に示す. Table-3 には解析に用 いた免震層パラメータを示す.

- 4. 検討手順
- 本解析における検討手順について示す.
- ① 地震動を最大速度 50(cm/sec)に基準化を行う.
- ② 検討モデルに対し、基準化後の地震動を入力し層 間変形を算出する。
- ③ 求めた層間変形を弾性限変形とし、基準地震動に おける塑性率1のモデルを作成する.
- ④ 上部構造の復元力特性をノーマルバイリニア型, (バイリニア係数 Pb=0.01)とし,地震動の倍率を 2.0
 倍まで上昇させた際の塑性率,層間変形を求める.

5. 入力地震動

解析に用いた最大速度 50(cm/sec)基準化後の入力地 震動を Table-4 に示す.

Table-4 Input seismic motion				
地震波名	地震波倍率	最大加速度 (cm/sec ²)	最大速度 (cm/sec)	最大変位 (cm)
EL Centro 1940 NS	1.49	507.78	50.00	17.18
Hachinohe 1968 NS	1.59	357.57	50.00	24.33
JMA Kobe 1995 NS	0.61	495.25	50.00	11.07
TAFT 1952 EW	2.92	513.54	50.00	14.65
柏崎	0.39	258.36	50.00	22.50
BCJ-L2	0.94	333.22	50.00	40.07

<u>6. 解析結果</u>

解析結果を Figure-4~Figure-7 に示す.なお降伏せん断

カ係数 αs を 0.05 としたときの, El-Centro 1940 NS と JMA KOBE NS の解析結果を示している.

<u>7.考察</u>

解析結果から,免震構造の上部構造は想定した地震 動以上の入力が発生した際には,上部構造の下層に大 きく応答が出ることがわかる.これは地震波や免震層 パラメータによらない傾向であり,塑性率,層間変形 共にこの傾向がある.また一度塑性化が進行すると, その層において塑性率の急激な変化が起こり,危険な 応答となることがわかる.しかし免震パラメータによ る違いは,本解析においては顕著にみられなかった.

そこで解析結果に大きな違いがみられた入力地震動 JMA KOBE NS における 2 つのモデルを抽出し, 固有値 解析を行った結果を Figure-8 に示す.

Figure-8 を見ると, Model-1 においては地震波倍率 が上昇すると1次の第1層での刺激関数が小さくなり, 2次3次の高次モードが励起されていることがわかる. 一方で Model-2 においては地震波倍率による違いはほ とんどみられない.よって免震層パラメータによる応 答の励起のされ方については今後の課題となるが,刺 激係数などの固有値に着目することで,塑性化の進行 を予測できるのではないかと考えられる.

<u>8. まとめ</u>

本研究で得られた,上部構造塑性化後の特徴につい て以下に示す.

- 一度塑性化が進行すると、その層において塑性率の急激な変化が起こる.
- ② 上部構造が塑性化した場合,下層部の応答が励起 されやすい.
- ③ 1次モードの免震層での応答が低減され、高次モードの影響が大きくなることで、塑性化が進行する.

今後の検討として,塑性化が進行しやすいパラメー タを求める指標の作成や制御法の提案等が挙げられる. 【参考文献】

[1] 石丸辰治:「応答性能に基づく「対震設計」入門」彰国社,2004,3

[2] 菊池優,田村和夫,和田章:「免震構造物の安全評価に関する一考察」日本建築学会構造系論文集,第470号,1995.4