免震建物における上部構造塑性化の傾向免震・耐震構造及び変形エネルギーー定則の比較

Tendency of Plasticity on Superstructure of Base isolated building

Comparison of Deformation Energy Conservation Rule between Earthquake resistant building

and Base isolated building

○ 増澤拓也³, 古橋剛¹, 野村大輔²

*Takuya Masuzawa³, Takeshi Furuhashi¹, Daisuke Nomura²

This paper shows tendency of plasticity on superstructures of base isolated buildings. In this study, we make level2 ground motion waveforms criterions to analyze and compare of deformation-energy-conservation-rule between base isolated models and earthquake-resistant models. And we consider results of comparisons in eigenvalues.

<u>1. はじめに</u>

免震建物の上部構造は極めて稀な(以下レベル 2)地 震動に対して短期許容応力度以内,または弾性限以内 で設計されるのが一般的である.この基準に対し,経 済性の理由から弾性限界付近での設計がなされること がある.そのため,設計想定以上の地震動入力の際に, 上部構造が塑性化することは十分に考えられる.構造 体の塑性化については,耐震構造の保有耐力設計では, 変形エネルギーー定則が仮定され塑性後の挙動が考慮 されているが,免震上部構造は塑性後の挙動が考慮さ れていない.

そこで本研究では、免震上部構造の塑性後の挙動を 把握することを目的とし、変形エネルギー一定則を基 準とした塑性率の観点で耐震構造と比較し検討を行う.

<u>2.検討モデル</u>

免震モデルを Figure1a),耐震モデルを Figure1b)に 示す.免震・耐震モデルの上部構造は固有周期 0.5[s], 1.0[s], 1.5[s], 2.0[s]の 4 つのモデルを用いる.上部構 造は弾性限変形を除く諸元を同一とし,減衰は剛性比 例型で 1%付与,2 次剛性は初期剛性の 1/100 とする. 弾性限変形は4節の検討方法で設定する.免震層諸元 は塑性周期 4[s],初期剛性は2 次剛性の 10 倍とし,降 伏せん断力は建物重量の 3%とする.なお免震層の粘 性減衰はないものとする.各諸元を Table1 に示す.

3. 入力地震動

入力地震動は, El Centro 1940 NS, Hachinohe 1968 NS, TAFT 1952 EW, JMA KOBE 1995 NS, BCJ-L2 及び柏崎 で 2007 年に観測された新潟県中越沖地震の K-NET 波 形(以下 Kashiwazaki 2007 NS)の6波を用いる. Figure2 に各地震動の応答スペクトルを示す.本研究では2節 検討モデルで設定した免震モデルに対して上部構造を 弾性と仮定し地震動を入力した際,免震層変位が40cm となるように倍率を基準化する.これは,各地震動を レベル2と同程度の規模に基準化することを目的とし ている.基準化した倍率をTable2に示す.

Table 2 Magnifications of ground motion waveforms

	田左田畑[1]						
地震動倍率							
	0.5	1.0	1.5	2.0			
El Centro NS	2.14	2.45	2.80	3.05			
Hachinohe NS	2.19	2.28	2.32	2.66			
JMA KOBE NS	1.57	1.64	1.86	1.60			
TAFT EW	5.20	5.45	5.55	5.73			
Kashiwazaki NS	0.40	0.43	0.48	0.62			
BCJ-L2	1.07	1.10	1.12	1.19			

1:日大理工・教員・建築 2:日大理工・院(前)・建築 3:日大理工・学部・建築

<u>4. 検討方法</u>

想定以上の地震動入力時の免震・耐震上部構造の塑 性後の応答を以下の3つの手順により検討する.

①前節で設定したレベル2規模の基準化地震動を入力し免震・耐震モデルの上部構造塑性率が1となる様に弾性限変形を設定する.設定した結果をTable3に示す.
②設定したモデルに対して基準化地震動の1倍~2倍の入力を0.1倍刻みで加え,塑性率の変動を確認する.
③変形エネルギーー定則により求まる地震動倍率と塑性率の関係を表す曲線に対し,下側の領域を危険側とし,解析結果を比較する.

Table 3 Elastic limit deformation											
弾性限変形[m]	免震モデル				耐震モデル						
	固有周期[s]				固有周期[s]						
	0.5	1.0	1.5	2.0	0.5	1.0	1.5	2.0			
El Centro NS	0.009	0.043	0.100	0.140	0.145	0.450	0.410	0.810			
Hachinohe NS	0.009	0.036	0.078	0.156	0.060	0.390	0.155	0.850			
JMA KOBE NS	0.010	0.048	0.115	0.175	0.300	0.730	1.190	0.730			
TAFT EW	0.010	0.040	0.095	0.141	0.157	0.320	0.570	0.650			
Kashiwazaki NS	0.009	0.038	0.074	0.166	0.043	0.170	0.290	0.960			
BCJ-L2	0.009	0.042	0.088	0.170	0.160	0.260	0.500	0.680			

<u>5. 解析結果</u>

耐震・免震モデルの解析結果及び変形エネルギーー

Figure3 より,全ての固有周期で耐震モデルは概ね安 全側,免震モデル上部構造は,概ね危険側の応答を示 した.また,耐震・免震モデル共に上部構造の固有周 期が短いほど塑性化の進行が速い結果となった.

現行の耐震基準では、耐震構造の RC 造はレベル 2 地震動の 0.3 倍程度の入力で降伏を許容している. こ こで、レベル 2 地震動の 0.3 倍入力で塑性化を始める モデルを、塑性化の傾向が顕著な Figure3 の上部構造固 有周期 0.5[s]を用いて設定し検討する. 検討方法は4節 と同様である. 解析結果を Figure4 に示す.

Figure4 においても免震モデルの塑性化の進行が速 く,ほぼ全ての地震動において地震動倍率 1.5 倍付近 で応答塑性率が耐震モデルよりも大きくなった.

次に,免震構造のBCJ-L2基準化地震動の1倍,2倍 入力の刺激関数図と,免震・耐震上部構造の周期と減衰 の関係の推移を Figure5,6に示し固有値から考察する.

Figure 5 Functional function of Figure 5 Functions of Figure 5 L b 1 次の刺激関数は免震層が減少し上部構造が増加している.また,Figure6 より減衰定数は耐震構造で約 50%と大きく増加している一方で,免震モデル1 次はあまり増加していない.以上のことから,免震上部構造の塑性化の進行が速くなったと言える.

<u>6. まとめ</u>

免震建物においては、上部構造が塑性化を始めると 耐震構造と比較して塑性化の進行が速い.また、両構 造の降伏点の違いを考慮してもレベル2 地震動の 1.5 倍程度の入力から応答塑性率が大きくなる.以上から、 免震の上部構造の塑性化は好ましくなく、レベル2地 震動に対して余裕を持った設計を行う必要がある.

【参考文献】

1)石丸辰治:応答性能に基づく「対震設計」入門,彰国 社,2004