ねじりを受けるスポット溶接継手の疲労強度に及ぼす板厚の影響 Effect of Sheet thickness on Fatigue Strength of Spot-Welded Joint under Torsion

石田伶太¹, 〇三田貴敬¹, 栗原徹², 冨岡昇³, 岡部顕史³ Ryota Ishida¹, Takanori Mita¹, Toru Kurihara², Noburu Tomioka³, Akihumi Okabe³

In this paper, the influence of plate thickness on fatigue strength of spot welded joints subjected to torsion was investigated. A sensitivity analysis for the torsional shear joints gave a quantitative variation of nugget diameter and sheet thickness on fatigue strength of the joint with $5\sqrt{t}$ nugget diameter. In addition, we have attempted to validate the results of sensitivity analysis by conducting fatigue testing. In addition, the crack is a failure mode different depending on where that occurs. Therefore, to be considered by FEA.

1. 緒言

スポット溶接継手の疲労強度に及ぼす板厚の影響を 実験的に調べた論文は多く見られる.ナゲット径は一般 に板厚の平方根の5倍を目標として溶接されるため、こ れらの論文で使われている試験片は板厚と共にナゲッ ト径も変わっている.これらの疲労試験結果にはナゲッ ト径の影響も含まれ、純粋に板厚のみの影響を見ている ことにはなっていない.

三浦らは、引張せん断継手について、感度解析と疲労 試験を行い、疲労寿命に対する板厚の影響を定量的に明 らかにした.この板厚の影響はスポット溶接に作用する 荷重成分によって異なる.

本研究では、スポット溶接に主としてねじりが作用す るせん断ねじり継手について、感度解析を行い、ナゲッ ト径5√tの継手の疲労強度に対する板厚による変動量 からナゲット径成分を分離し、両者の変動量を定量的に 明らかにした.さらに、疲労試験を実施し、感度解析結 果の検証を試みた.また、き裂発生箇所による破壊モー ドの違いを有限要素解析によって検討した.

2. 公称構造応力に対する板厚の感度解析

板厚 t とナゲット径 d がともに微少量変化したとき, 公称構造応力の変化量を基準量との割合で表すと,

$$\frac{d\sigma_{ns}}{\sigma_{ns}} = \frac{\partial\sigma_{ns}}{\partial t} \frac{t}{\sigma_{ns}} \frac{dt}{t} + \frac{\partial\sigma_{ns}}{\partial d} \frac{d}{\sigma_{ns}} \frac{dd}{d}$$
(1)

 σ_{ns} $\partial t \sigma_{ns} t \partial d \sigma_{ns} d$ となる. 一般に, スポット溶接では目標ナゲット径 d は

$$d = 5\sqrt{t} \tag{2}$$

であるから、これを t で微分すると、
$$dd = \frac{5}{2} \frac{dt}{\sqrt{t}}$$
(3)

 $\frac{d\sigma_{ns}}{\sigma_{ns}} = \left(\frac{\partial\sigma_{ns}}{\partial t}\frac{t}{\sigma_{ns}} + \frac{1}{2}\frac{\partial\sigma_{ns}}{\partial d}\frac{d}{\sigma_{ns}}\right)\frac{dt}{t} = (S_t + 0.5S_d)\frac{dt}{t} \quad (4)$ となる.ここで、 S_t , S_d はそれぞれ板厚感度、ナゲッ ト径感度である.

$$S_{t} = \frac{\partial \sigma_{ns}}{\partial t} \frac{t}{\sigma_{ns}} \quad S_{d} = \frac{\partial \sigma_{ns}}{\partial d} \frac{d}{\sigma_{ns}} \tag{5}$$

公称構造応力
$$\sigma_{ns}$$
に対する板厚の感度 $S_{t,d=5\sqrt{t}}$ は
 $S_{t,d=5\sqrt{t}} = S_t + 0.5S_d$ (6)

感度解析の結果を表1に示す.感度は板厚に依らず ほぼ一定値となる.

式(4)より板厚の変動量に対する公称構造応力の変動 量が得られる.この変動量のうち板厚変動成分とナゲ

<u>st</u> , <u>st</u> (7) で与えられる.この計算結果を表1に示すが、 σ_{ns} の 変動量のうち52.5%が板厚変化に起因し、47.5%はナ ゲット径の変化によるものである.これらは引張せ ん断継手とは大きく異なる結果である.次章以降で は、疲労試験を実施し、これらの結果を検証する.

Table1 Sensitivity of each Sheet thickness and Diameter of nugget

t [mm]	d [mm]	St	Sd	St+0.5Sd	St/(St+0.5Sd) [%]	Sd/(St+0.5Sd) [%]	
1.0	5	-1.00	-1.91	-1.96	51.2	48.8	
1.0	6	-1.00	-1.86	-1.93	51.8	48.2	
1.0	7	-1.00	-1.83	-1.92	52.2	47.8	
1.0	8	-1.00	-1.74	-1.87	53.5	46.5	
1.2	5	-1.00	-1.90	-1.95	51.3	48.7	
1.2	6	-1.00	-1.84	-1.92	52.1	47.9	
1.2	7	-1.00	-1.79	-1.90	52.8	47.2	
1.2	8	-1.00	-1.65	-1.83	54.8	45.2	
1.6	5	-1.00	-1.91	-1.96	51.2	48.8	
1.6	6	-1.00	-1.84	-1.92	52.1	47.9	
1.6	7	-1.00	-1.77	-1.89	53.1	46.9	
1.6	8	-1.00	-1.64	-1.82	54.9	45.1	
Average		-1.00	-1.81	-1.91	52.5	47.5	

3. 実験結果

3.1 試験片及び溶接条件

図 1 は疲労試験に用いたスポット溶接継手の模式図 である.供試材料は冷間圧延鋼板 SPCE で,板厚 t=1.0mm, 1.2mm, 1.6mm の 3 種類である.スポット溶接での電極 は C 型の φ=4,6,8mm を使用した.軟鋼板のスポット溶接 の標準条件を基準とし,溶接電流は静的引張せん断強度 が最大となるチリ発生直前の値とした.疲労試験は荷重 制御で行い,完全片振りとした.

Fig.1 Spot-welded joints under torsional shear for fatigue testing

3.2 疲労試験結果

図2は荷重範囲と破断繰り返し数線図である.疲労試 験終了後,スポット溶接継手のナゲット内部及び周辺に 生じる破壊の形態を観察した結果,3種類の破断モード

1) 日大理工・学部・機械 2) 日大理工・院・機械 3) 日大理工・教員・機械

が見られた.ナゲットの周囲で破断しナゲットが完全に 抜けるプラグ破断(Plug fracture),接合面でナゲットが破 断するシャー破断(Shear fracture),両者の混在する部分 プラグ破断(Partly Plug fracture)である.これらを図3に 示す.各試験片の破壊形態を表2に示す.破壊形態は板 厚およびナゲット径によって異なる.公称構造応力によ る疲労寿命評価は、き裂がナゲット端に生じるプラグ破 断を前提としているため、シャー破断には適用できない. 従って、ナゲットに主としてねじりが作用する継手に対 しては、2章で述べた感度解析の適用可能範囲は板厚や ナゲット径に限定される.

Fig.2 Load range-number of cycle to failure

(a) Plug fracture (b) Partly Plug fracture (c) Shear fracture Fig.3 Shapes of fatigue fracture in and around the nugget

Table2 Fatigue fracture mode

4. 有限要素解析

前章で述べた破壊モードの違いは、き裂の発生個所の 違いによるものであると考えられるため、有限要素解析 (FEA)によってナゲットの側面及び界面の応力分布を

検討した. 解析に使用した FEA モデルの概要を図 4 に示す.図

1 に示すせん断ねじり継手では、ナゲットに作用する分 担荷重の主たる成分はねじりモーメントで、ナゲット端 に生じる応力の周方向分布はほぼ一定となるため、厚さ t の円柱 2 つを突き合わせ、ナゲットに相当する部分を 接合した解析モデルを作成した.上の円柱側面に周方向 力を一様に作用してねじりを負荷し、下の円周側面の全 自由度を零とし、完全固定とした.FEA モデルはソリ ッド要素を用いて作成し、3次元線形弾性解析を行った. ナゲット中心を含む断面上のミーゼス応力のコンタ 一図を図5に示す.ナゲット端に応力集中が生じている. ナゲットの側面また接合面(界面)に生じる主たる応力 成分はせん断応力である.ナゲット側面の周方向せん断 応力 $\tau_{r\theta}$ と接合面に生じるせん断応力 $\tau_{z\theta}$ の最大値を それぞれ τ_{side} , $\tau_{interface}$ と表示して,両者の比を示した のが表3である.板厚1.0mmの場合, d=6, 8mmでは $\tau_{side} > \tau_{interface}$ となり,ナゲット側面のせん断応力が接 合面より大きいため,疲労き裂はナゲット端全周に渡っ て発生し接合面側から板厚方向に進展してプラグ破断 に至る.板厚1.6mmの場合, d=4, 6, 8mmのいずれの 場合でも $\tau_{side} < \tau_{interface}$ となり,接合面のせん断応力が 側面より大きいため,シャー破断となる.

Fig.5 Mises stress contours on the cross-section through the center of nuggt by FEA (t=1.0mm, d=6)

Table3 Ratio of shearing	stresses on si	ide of nugget	and interface
--------------------------	----------------	---------------	---------------

<i>l</i> side/ <i>l</i> interface									
\sim		Nuget diameter <i>d</i> [mm]							
		2	4	6	8	10			
	1.0	0.745	1.06	1.05	1.05	1.08			
<i>t</i> [mm]	1.2	0.815	1.05	0.965	1.03	0.986			
	1.6	0.366	0.455	0.521	0.483	0.515			

5. 結論

ねじりを受けるスポット溶接継手について,感度解析 を行い,疲労強度に対する板厚およびナゲット径の変動 量を定量的に明らかにした.さらに,疲労試験により感 度解析結果を検証した.また,有限要素解析を行い,最 大せん断応力の発生個所と疲労き裂発生個所検証した.

- 解析により,疲労強度の変動量のうち52.5%が板厚 変化に起因し、47.5%はナゲット径の変化によるも のである.
- (2) 板厚 1.0mm ではプラグ破断,板厚 1.6mm ではシャ ー破断となるため、き裂の進展方向は板厚に起因する.板厚 1.2mm では応力が側面破壊と界面破壊の 状況が混同し、部分プラグ破断となる.
- (3) 有限要素解析による最大せん断応力の発生個所と 疲労き裂発生箇所は良い対応を示した.

文献省略