M-3

電波監視を目的とした鉄骨構造の建物における電波伝搬の検討

A Study on Electromagnetic Wave Propagation in the Steel Frame Structure Building for the Electromagnetic Wave Monitoring

> ○堀 貴裕¹, 三枝 健二² * Takahiro Hori¹, Kenji Saegusa²

Abstract: In order to construct the electromagnetic monitoring system, the transmitted wave propagation characteristics of a wiretap was measured in the steel frame structure building. In addition, the characteristics were analyzed. This paper describes them.

1.まえがき

近年,不要電磁波の照射により電子機器が誤作動を引き起こす問題 が発生している.一方,電波による通信に関する問題として,各種情 報の盗聴等の悪意を持った問題も発生している.これに対して電波の 発生または到来を効果的に監視できれば,その対策を講じる契機とな り得る.そこで本研究では,建物における電波の監視技術の構築を目

的とした検討を行う.先の報告では、構成した電波監視 装置がコンクリート構造である建物内のどのエリアま で監視可能であるかについて検討した[1].本報告では 本学船橋校舎 14 号館(鉄骨構造)を対象として受信エリ アの検討を行った結果について述べる.

2. 電波監視装置について

電波監視装置の構成を Fig.1 に示す. これは、到来する電波 を広帯域アンテナで受け、増幅(Amp)した後にスペクトラム アナライザ(SA)を用いて受信電力の測定を常時行う. この際、 特定の周波数の値がある一定値を超えた場合に PC に表示する 仕組みを考えている.

3. 部屋を対象とした受信エリアの検討

本学船橋校舎 14 号館(鉄骨構造,地上5 階,地下1 階建て) を対象とし,盗聴器を遮音に近づけた状態にした際の受信電 力測定を行った. Fig.2 に2 階の平面図を示す.受信機を Fig.2 中の2 階の廊下端に設置し,発信器の位置を赤点線上で変え て,受信電力を測定した.なお,盗聴器の発信周波数は 398.605MHz である.測定結果を Fig.3 に示す. Fig.3 より 14 号館では

壁を透過するごとに 5dB ほどの低下が見られた.また受信アンテナは1階層分受信可能であることがわかる.

4. 鉄骨構造における電波伝搬特性

隣合う教室と上層階との部屋の電波伝搬特性を見るために FDTD 法を用いた解析を行った. 同階層に2 教室,上層に 2 教室分の解析モデルを Fig.4 に示す. 14 号館 1423 教室に発信機を設置した際の測定環境を模擬し, 1423 教室・1424 教室・1433 教室・1434 教室を対象として寸法を決定した. 媒質はコンクリート(厚み 300mm, 比誘電率 5.89-j0.16)と鉄 (導電率 1)とガラス(比誘電率 5.5)の 3 つで構成している. 盗聴器を想定した周波数 398.605MHz の微小ダイポールを Fig.4 中の赤点の位置(横方向:部屋の中心位置,縦方向:床から高さ 500mm)に設置し, z 偏波の電界強度分布について解析を行った. 解析における測定面は x-y 平面(z=7000mm)と x-z 平面(y=6650mm)の 2 つとした.

受信用広帯域アンテナ

Figure 2. 測定建物: 14 号館 2 階平面図

5. 電界強度分布の解析結果

z-x 平面での解析結果を Fig.5 に, x-y 平面での解析結 果を Fig.6 に示す. Fig.5 より上層階への伝搬は天井面 (デッキプレート)での透過は見られず,窓からの伝搬が 大きいことがわかる. このことから,電波監視装置は 廊下側に置くべきであると言える. Fig.6 より,隣接す る教室には教室間のコンクリート壁と側面のガラス壁 から伝搬することがわかる. 特にガラス壁からの伝搬 が大きく,ガラス壁を透過した電波が廊下で反射・屈 折し,伝搬すると考える. また,実測では廊下終端ま で電波を受信することができたにも関わらず Fig.6 よ り電波が終端まで到来していないことがわかる. これ は解析モデルが教室のみとなっており,実際には教室 に机や椅子,廊下には壁や階段などが存在しているた め,それらが影響しているのではないかと考える.

6. まとめ

今回, 電波監視を目的とした鉄骨構造の建物にお ける電波伝搬の検討を行った.実測より、本学船橋 校舎14号館(鉄骨構造)の2-5階を対象に受信エリア の検討を行なった.この結果より、教室を監視対象 とした場合,受信機と発信器がフロア終端まで監視 可能であることがわかった.次に,FDTD 法による鉄 骨構造での電波伝搬特性について解析的検討を行なっ た. 上層階への伝搬特性としては天井面(デッキプレー ト)での透過は見られず、窓からの伝搬が大きいことが わかり、このことから、電波監視装置は廊下側に置く べきであることがわかった. 隣接する教室間での伝搬 特性としては、コンクリート壁と側面のガラス壁から 伝搬することがわかった.特にガラス壁からの伝搬が 大きく、ガラス壁を透過した電波が廊下で反射・屈折 し、伝搬すると考える.また、実測では廊下終端まで 電波を受信することができたにも関わらず Fig.6 より 電波が終端まで到来していないことがわかる. これは 解析モデルが教室のみとなっており、実際には教室に 机や椅子, 廊下には壁や階段などが存在しているため, それらが影響して実測との差異が生じたと考える.

参考文献

[1]萩倉 武宏,他,学術講演会 M-19 2012

Figure 6. 電界強度分布 (x-y 平面)