低スクルートン数での角柱のギャロッピング振動解析

Galloping vibration analysis of the prism of a low Scruton number

守川耀¹,近藤典夫²

Yo Morikawa¹, Norio Kondo²

We present numerical results for galloping vibration of a square cylinder which is mounted in a smooth flow. The cylinder which is supported by the damper-spring system is treated as model of two degrees of freedom.

1. はじめに

流体力によって構造物は振動することがよく知 られている.その中でギャロッピング振動と呼ばれ る振動現象がある.ギャロッピング振動は角柱の質 量,剛性及び減衰定数によって異なるため,その相 違点を解明する.角柱構造物の横方向振動する自励 振動をギャロッピングという.ギャロッピングの現 象はデン・ハルトークによって明らかにされた現象 によって,その特性が解明されてきた.しかし,それ らの多くは実験によるもので,3次元数値解析によ る研究はあまり多くない.

2. 解析の振動モデル

角柱の振動は Fig.1 のように, ダンパーとバネに よって与えられた状態に設定する.ここで奥行 D,幅 Bとし,高さ H は H=4B とする.

3. 基本式

本計算で使用する流体の式は連続方程式(1)とナ ビエ・ストークス方程式(2)~(4)である.

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$$

1:日大理工・学部・海建,2:日大理工・教員・海建

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z}$$
(1)

$$= -\frac{\partial p}{\partial y} + \frac{1}{R_e} \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right) + \chi \quad (2)$$

$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{u}\frac{\partial \mathbf{v}}{\partial \mathbf{x}} + \mathbf{v}\frac{\partial \mathbf{v}}{\partial \mathbf{y}} + \mathbf{w}\frac{\partial \mathbf{v}}{\partial \mathbf{z}}$$
$$= -\frac{\partial \mathbf{p}}{\partial \mathbf{y}} + \frac{1}{R_e} \left(\frac{\partial^2 \mathbf{v}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{v}}{\partial \mathbf{y}^2} + \frac{\partial^2 \mathbf{v}}{\partial \mathbf{z}^2}\right) + \mathbf{Y} \quad (3)$$

$$\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z}$$
$$= -\frac{\partial p}{\partial z} + \frac{1}{R_e} \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} \right) + Z \qquad (4)$$

ここで, u,v,w はそれぞれ x,y,z 方向の速度, ρは 液体の密度, pは圧力を表わす.本研究では FEM に より計算する.角柱の振動方程式は無次元表示で以下 のように与える.

$$\frac{d^2x}{dt^2} + \frac{4\pi h}{U_r}\frac{dx}{dt} + \left(\frac{2\pi}{U_r}\right)^2 x = \frac{1}{2\chi}C_D$$
$$\frac{d^2y}{dt^2} + \frac{4\pi h}{U_r}\frac{dy}{dt} + \left(\frac{2\pi}{U_r}\right)^2 y = \frac{1}{2\chi}C_D$$

ここで、Ur は換算速度、 χ は質量比、C₀は抗力係数でる. CL は揚力係数である.また、 $S_c = 2\chi \times 2\pi h$ で、本論文では Sc=1.0 に設定した.

5. 数値結果

Fig. 3 は Ur=8.0 と Ur=14.0 の時の x 軸方向の変位と y 軸方向の変位の時刻歴曲線である. Ur=8.0 の時のイン ライン振動 x は, Ur=14.0 の場合よりも振動振幅が小さ くなっている. さらにクロスフロー振動 y では, Ur=8.0 と比べて Ur=14.0 の振幅が大きくなっている事が分か る.また Ur=14.0 では振動の周期が大きくなっている. Fig. 5 は Ur の変化に対するクロスフロー振動 yampの数 値結果を示す.比較として Sc=20 に対する実験結果²⁰ を示している.本数値結果は Sc=1.0 に対するもので, Sc が異なるために振幅の変化に差が見られるが, Ur の増 加に伴う yamp の変化の傾向は同じである事が分かる. この数値結果では、Ur<4.0の範囲では yamp は極端に小 さいが Ur が4を超えると yamp は大きくなり続け る.Fig.6と7は角柱背後における瞬間的な圧力の鳥瞰 図を示している.この図から、スパン方向の流れは一様 ではなく、大きく乱れている事が分かる.

Fig.3 インラインとクロスフロー方向の時刻歴曲線 Ur=8.0

Fig.4 インラインとクロスフロー方向の時刻歴曲線 Ur=14.0

Fig.5 数値計算と実験結果の比較

Fig.6 圧力の鳥瞰図, Ur=8.0

Fig.7 圧力の鳥瞰図, Ur=14.0

6. おわりに

本論で、2次元角柱の流力振動をとらえてきた.3次元 数値計算によって角柱の振動性状を十分に捉える事が できた.さらに、角柱背後での流れが相当に乱れている 事が、この計算結果から分かる.

参考文献

- 日本鋼構造協会編 『構造物の耐風工学』東京電機大学出版局 1997
- 2) T. MIYATA, M. MIYAZAKI and H. YAMADA PRESSURE DISTRIBUTION MEASUREMENTS FOR WIND INDUCED VIBRATIONS OF BOX GIRDER BRIDGES Journal of Wind Engineering Industrial Aerodynamics,14(1983) 223-234 Elsevier Science Publishers B.V., Amsterdam-Printed in The Netherlands, pp225