0-17

移送磁場反転配位プラズマにおける誘導電流駆動実験

Inductive current drive experiments on a translated field-reversed configuration plasma

〇荒井真美子¹, 片山晴理¹, 石渡純平², 関口純一³, 高橋努³, 浅井朋彦³ *Mamiko Arai¹, Seri Katayama¹, Junpei Ishiwata², Junichi Sekiguchi³, Tsutomu Takahashi³, Tomohiko Asai³

Abstract: A field-reversed configuration (FRC) is a compact toroid mostly with poloidal magnetic field. Because of its simply-connected configuration, the FRC can be translated axially along a gradient of external magnetic field and trapped in a confinement region with quasi-static external magnetic field. On the FAT facility, a toroidal current drive by a center solenoid (CS) on the translated Spherical torus (ST) -like FRC has been proposed. The CS is installed in a quasi-spherical confinement region. The theta-pinch FRC translates into the torus region with the translation velocity in a range of Alfven velocity. Therefore, it experiences a topological transition of magnetic configuration from a simply-connected to a torus structure during the translation. In this experiments, poloidal current can be driven through a center conductor on both theta-pinch and translated FRCs. The initial result of translation and inductive current drive onto the translated FRC will be reported.

1. はじめに

磁場反転配位(Field-Reversed Configuration: FRC)プ ラズマは、ポロイダル磁場のみで構成された開いた磁 力線領域と閉じた磁力線領域から構成されるコンパク トトーラスプラズマである^[1].FRCの反転磁場はプラ ズマの密度勾配による反磁性電流によって形成される ことから、体積平均ベータ値が極限に高いという特徴 を有し、高効率な核融合炉心としての利用が期待され ている.また閉じた磁力線に捕捉されるFRCプラズマ は、単連結構造であり外部磁場を形成するコイルと鎖 交せず、軸方向へ移送が可能である.このため、プラ ズマを生成領域から準安定的な閉じ込め磁場を持つ閉 じ込め領域へと移送が可能である.

これまで, FRX-C/T (ロスアラモス国立研究所)^[2] や FIX (大阪大学)^[3] において,移送 FRC に微量なト ロイダル磁場が観測された.さらに, TCS (ワシント ン大学)では, FRC の移送過程において, Spherical Toras (ST)様な磁場配位へ自己組織化することが示された.

この移送FRCにおける弱トロイダル磁場の発現機構に

ついては、移送過程での磁場の非対称性などの理由が 挙げられているが解明はされていない.しかしながら、 わずかなトロイダル磁束の存在が FRC の MHD 不安定 性の抑制に効果があることは、実験により示されてい る^[4].

この FRC を核融合炉心とするためには, 追加熱方法 の確立が必須である. 高ベータ, すなわち内部磁場が 極端に低い FRC において, 中性粒子入射 (Neutral Beam Injection: NBI) が最も有効な追加熱法であるが, 高温・ 高密度な FRC を生成することが可能である逆磁場シー タピンチ (Field-Reversed Theta-Pinchi) 法では, NB の 接線入射に必要な磁束を得ることが難しい. そこで, FRC の捕捉磁束増幅のための補助的な電流駆動法の開 発が課題とされている.

本研究では, FRC プラズマ生成・移送装置 FRC Amplification via Translation (FAT)の移送部に中心ソ レノイドコイル (CS)を設置し,移送 FRC に対して電 磁誘導による電流駆動を行うことを目的としている.

1:日大理工・院(前)・物理 2:日大理工・学部・物理 3:日大理工・教員・物理

2. 実験装置

本実験で扱う FAT の詳細を Figure 1 に示す.生成領 域は、外径 256 mm、長さ 2 m の石英製真空放電管と、 一巻き銅製シータピンチコイル、金属フランジから構 成される.閉じ込め領域は外径 800 mm、長さ 1 m の石 英製真空放電管と多層巻きコイル、およびコニカル形 状の金属チェンバーから構成される.閉じ込め領域に 設置される CS は、直径 55 mm、長さ 1 m の 2 層のア ルミ製ソレノイドコイルから成り、その軸を炭素繊維 強化プラスチック (CFRP) が支える.CS の周囲を取 り囲むステンレス鋼製の薄肉シェルは FAT 移送部と CS の接続を担い、真空または FRC プラズマと直接背 接触する.先端部は取り外しが可能であり FRC を CS に誘導するガイド導体を取り付けることに可能である. また、シェルに電流を流すことにより FRC にトロイダ ル磁場を注入することも可能である.

Figure 2. Schematic view of the center solenoid.

	Outside		Length [mm]		
	diameter [mm]	Thickness [mm]	Solenoid		Turn number
shell	60.5	0.3	—	2100	—
CFRP-out	58.9	1.6	—	2240	—
CS-out	55.0	3.0	1000	2300	45
CS-in	45.0	3.0	1000	2500	45
CFRP-in	37.8	1.6	—	2600	—

Table 1. Specification of the center solenoid.

3. 実験結果

移送 FRC 実験の結果を Figure 3-4 に示す. 閉じ込め 部への入射時を 1st, 反射後を 2nd, 3rd とする. (casel: 2nd pass, case2: 3rd pass) l_sはセパラトリクス長であり, r_sはセパラトリクス半径を示す. 移送された FRC は下 流金属チェンバー付近で反射し, その後, 上流部でさ らに反射している. 生成部では 60 mm であるセパラト リクス半径が移送後では最大 130 mm に膨張, それに 伴い体積は約 4 倍に膨張している. 偏長率は磁場形状 に従い, 閉じ込め部ではより球状に近い移送 FRC が得 られた(Figure 4). また移送速度は約 100 km/s であり, アルヴェン速度オーダーの移送速度が得られている.

Figure 3. Time evolution of separatrix radius (case2).

4. 展望

今回, CS による FRC の誘導電流駆動実験のための 予備実験の結果を示した. 偏長な FRC を準球状な閉じ 込め領域へ高速移送し, 偏長率が制御できることを確 認した. また, 今後, 中心導体を有する生成領域にお ける FRC 生成実験での結果を基に, 移送領域における FRC 誘導電流駆動実験を行い評価を進める.

5. 参考文献

[1] M. Tuszewski, : "Field reversed configurations" Nucl. Fusion Vol.28, No. 11, pp.2033 (1988).

[2] M. Tuszewski and B. L. Wright, "Observation of Field-Reversed Configurations with Spheromak Magnetic Field profiles" Phys. Rev. Lett, Vol. 63, No. 20, pp. 2236 (1989)

[3] A. Shiokawa and S. Goto, "Dynamic property of spontaneous toroidal field in field - reversed configuration plasmas" Phys. Fluids B Vol. 5, No. 2, pp. 534 (1993)

[4] H. Y. Guo, A. L. Hoffman, L. C. Steinhauer, and K. E.
Miller, : "Stabilization of Interchange Modes by Rotating Magnetic Fields" Phys. Rev. Lett. No. 95, pp.185001 (2005)