O-31

C15 型ラーベス化合物 HfV2 における超伝導への非磁性不純物効果

Non-magnetic impurity effects on superconductivity of C15-type Laves compound HfV2

○小川幹⁻¹,小野拓海⁻²,風間拓人⁻²,村井亮太⁻²,前田穂⁻³,高瀬浩一⁻³,高野良紀⁻³,渡辺忠孝⁻³ *M. Ogawa¹, T. Ono², T. Kazama², R. Murai², M. Maeda³, K. Takase³, Y. Takano³, T. Watanabe³

Abstract: C15-type Laves compound HfV₂ is a superconductor with the relatively high $T_c \sim 9$ K. We investigate superconducting properties of poly-crystalline Hf(V_{1-x}Ge_x)₂ to study non-magnetic impurity effects on the superconductivity of HfV₂.

1. はじめに

1911年にKamerlingh-Onnes が水銀の超伝導を発見し て以来,多くの研究者たちによって新たな超伝導物質 の探索が盛んに行われてきた.また,1957年にBardeen, Cooper, Schrieffer らによって提唱された BCS 理論は, 超伝導の基本的な仕組みを解明した.

過去に超伝導物質の探索が盛んに行われた物質群の 一つにラーベス化合物がある.ラーベス化合物の結晶 構造には MbCu₂型(C15), MgZn₂型(C14), MgNi 型(C36) の 3 種類があるが,超伝導を示す化合物は 100 種類ほ どが発見されている. $ZrV_2 \ge HfV_2$ は C15 型ラーベス 化合物の一種であるが,ラーベス化合物の中では最も 高温の $T_c \sim 9 \text{K}$ で超伝導転移を示す[1]. HfV_2 について は,過去の NMR 測定からポイントノードをもつ異方 的超伝導ギャップ構造を示唆する実験結果が報告され ており,非 BCS 超伝導が発現している可能性が指摘さ れている[2].

我々は HfV₂について, 超伝導ギャップ対称性の研究, 即ち非 BCS 超伝導の検証を, 具体的には HfV₂におけ る超伝導への非磁性不純物効果の研究を行っている. 超伝導体に非磁性不純物, 即ち「乱れ」を導入すると, BCS 超伝導の場合は T_c が変化しないのに対し, 非 BCS 超伝導の場合は T_c が著しく抑制されることが知られて いる. 今回我々は, HfV₂及び非磁性不純物として Ge を ドープした Hf(V_{1-x}Ge_x)₂ の多結晶試料の作製と物性評 価を行った.

Figure 1. Cubic crystal structure of HfV₂.

2. 実験方法

HfV₂及び Hf(V_{1-x}Ge_x)₂の多結晶試料はアルゴンガス 雰囲気中におけるアーク溶融法により作製した.原材 料には Hf インゴット(99.9%), Vパウダー(99.9%), Ge パウダー(99.999%)を使用した.試料作製の手順として, まず化学量論比に従い Hf, V, Ge を秤量し, V, Ge パ ウダーの混合及び圧粉成形を行った.その後, V, Ge 圧 粉体を Hf インゴットとアーク溶融し凝固させた.作製 した試料は,粉末 X 線回折(XRD)測定による結晶構造 の評価と,電気抵抗率及び磁化率の温度依存性の測定 による物性の評価を行った.

1:日大理工・学部・物理 2:日大理工・院(前)・物理 3:日大理工・教員・物理

- 3. 実験結果
 - i. 粉末 XRD 測定

Figure 2 に,作製した HfV₂多結晶試料の粉末 XRD 測定の結果を示す.ほぼ単相の C15 型ラーベス構造が 得られていることが確認できる.

Figure 2. Powder XRD patterns of poly-crystalline HfV₂.

ii. 磁化率測定

HfV₂ 多結晶試料における磁化率の低温での温度 依存性(H = 10 Oe)を Figure 3 に,室温までの温度依存 性(H = 50000 Oe)を Figure 4 に示す. Figure 3 では, $T_c \sim 9$ K での超伝導転移が確認できる.また Figure 4 で は, $T \sim 120$ K 付近に磁化率の異常が確認できるが,こ れはマルテンサイト変態によるものであると考えられ る[1].

Figure 3. Low-temperature magnetic susceptibility in poly-crystalline HfV_2 with H = 10 Oe as a function of temperature.

Figure 4. Temperature dependence of magnetic susceptibility in poly-crystalline HfV_2 with H = 50000 Oe.

当日の発表では、HfV₂及び Hf(V_{1-x}Ge_x)₂のより詳細な 実験結果を報告する予定である.

4. 参考文献

[1] B. Luthi *et al.*, Z. Phys. B – Condensed Matter **60**, 387-392 (1985).

[2] Y. Kishimoto et al., Phys. Rev. B 64, 024509-1-9 (2001).