静止した浮体式垂直軸型風車に作用する風荷重の特性把握

Characteristics of Wind Loads Acting on a Stationary FVAWT

〇四宮夕芽花¹,松下毅¹,関口竣介²,惠藤浩朗³
* Yumeka Sinomiya¹, Takeshi Matsushita¹, Shunsuke Sekiguchi², Hiroaki Eto³

Abstract: Existing studies have determined the characteristics of wind loads on floating vertical axis wind turbines (FVAWT) according to operating conditions, but their analyses were limited to angles θ from (0° to 60°) when the wind turbine is stopped. The purpose of this study is to investigate the effect of θ from (0° to 105°) when the wind turbine is stopped, as well as to understand the effect of the presence or absence of a rotating axis.

1. はじめに

既存研究^[1]では,浮体式垂直軸型風車:Floating Vertical Axis Wind Turbine(以下,FVAWT)について稼 働状況に応じた風荷重の特性把握が行われたが,静止 時の解析において風車部の配置角度(θ)が 0°~60°と 限定的な解析にとどまっている.そこで本研究では静 止時の(θ)を 0°~105°まで変化させ,さらに回転軸の 有無による影響を把握することを目的とする.

2. 研究方法および解析条件

Figure 1 に FVAWT のモデルおよび諸元を示す. 風車 モデルは三枚翼の半径が10mとなる直線翼ダリウス型 風車を採用し、ブレード(翼)の規格は NACA0018 と した.本研究では風車部に作用する風荷重の特性把握 を目的としていることから、ブレードの変形は考慮せ ず剛体としてモデル化した.また風車部の軸となる円 筒状の部材 (Tower) が風車内部の風の流れに影響する ことが予想されるため、その効果を確認するため中心 部の Tower が無いモデル (Case 1) と Tower が有るモ デル(Case 2)を用意した.また風車の静止時の風に対 する風車部の配置角度(θ)が不明であることから, Figure 2 に示すとおりθを 0°~105°まで 15°ごとに回転 させ、カットアウト風速(本研究では25m/s)以降の風 速(V_w)を段階的に変化させることでθごとのV_w変化に 伴う風荷重特性を把握した.本研究では風荷重解析に 汎用流体解析ソフト scFLOW を用い定常解析を行い, 得られた風荷重の抗力 (F_D), 揚力 (F_L) を(1), (2)式に より無次元し抗力係数 (C_D), 揚力係数 (C_L) を算出し それらの係数についての傾向把握も実施する.

$$C_D = F_D / \left(\rho r l V_w^2\right) \tag{1}$$

$$C_L = F_L / \left(\rho r l V_w^2 \right) \tag{2}$$

ただし、ho:空気の密度、r:回転半径、l:翼長、 V_W 風速

Figure 1 FVAWT model Figure 2 Layout of FVAWT

3. 解析結果および考察

Case 1, 2における θ ごとの V_w 変化に伴う F_D , F_L をそ れぞれ Figure 3, 4 に示す. 結果からどのθにおいても $V_w \ge F_D$ の関係は二次曲線を示し、 F_D は Case 1, 2 それ ぞれ θ が 0°の時に最大となることが確認され、 F_L は θ が 0°の時にはほとんど確認されなかった.これは,1枚の ブレードが風向に対して直角に静止していることで受 圧面積が最大となることが要因とされる. F_Lにおいて も同様に Case 1, 2 それぞれ のの時を除き二次曲線 を示し, θが 105°の時に最大となった. これらのことか ら, x 方向に働くF_Dにおいては, 平面での受圧面積, 物 体上部と下部との圧力差によって z 方向に生じるF_Lに おいては曲面での受圧面積が大きいほどそれぞれ大き くなる可能性が示唆された.また,Case1とCase2で F_D , F_L の傾向に違いが見られた. これは, Figure 5, 6 に 示すように Tower があることにより Tower の周りの流 況が乱れ、風車内部の流況へ影響を与えたからと考え られる. これらのことから Tower が周辺の流況に与え る影響は大きく, Tower を考慮したモデルでの解析が 望まれる. 今後, Tower 径を変化させた系統計算を行 い, さらなる検討を進めていく.

1:日大理工・学部・海建 2:・日大理工・院(前)・海建 3:日大理工・教員・海建

Figure 3, 4 の F_D , F_L から算出した Case 1, 2 におけ る θ ごとの V_w 変化に伴う C_D , C_L をそれぞれ Figure 3, 4 に示す. 結果から Case 1, 2 それぞれどの θ においても V_w 変化に伴う C_D , C_L の変化はほとんどなく一定となっ た. このことから静止時の F_D , F_L は V_w の変化に関わら ず算出した C_D , C_L から概算可能となる可能性が示唆さ れた. また θ ごとの C_D , C_L の値には違いが見られたため 様々な条件で C_D , C_L を算出することの重要性が確認さ れた.

4. おわりに

本研究で得られた知見を以下に示す.

・ FVAWT の静止時に作用するF_Dにおいては、平面での 受圧面積、F_Lにおいては曲面での受圧面積が大きい ほどそれぞれ大きくなる可能性が示唆された

- ・ Tower が周辺の流況に与える影響は無視できないため, Tower を考慮したモデルでの解析が望まれる
- ・ FVAWT の静止時に作用する F_D , F_L は V_w の変化に関わらず算出した C_D , C_L から概算可能となる可能性が示唆された
- ・ θ ごとの C_D , C_L の値には違いが見られたため様々な 条件で C_D , C_L を算出することの重要性が確認された

参考文献

[1] 四宮夕芽花,関口竣介,惠藤浩朗:浮体式垂直軸型風車
に作用する風荷重の推定に関する基礎的研究,日本建
築学会大会(近畿)学術講演会,2023.9

Figure 4 F_D , F_L C_D and C_L with V_w changed for each θ in Case 2

Figure 5 Flow conditions stationary at 0 deg. in Case 1

Figure 6 Flow conditions stationary at 0 deg. in Case 2