超弾性柔要素部材を用いた次世代制震構造システムに関する研究 (その17 ダンパー集中配置,連層耐震壁片側配置した試験体の振動台実験)

New Generation Energy Dissipation Structural System using Super-Elastic Member

Part17. Dumper Arranged Concentration and

Multi Story Shear walls Arranged One Side using the experimental specimens

○渡邊恭平¹, 木竜雅康¹, 黒澤諒¹, 竹内健一², 北嶋圭二², 中西三和³, 安達洋³ *Kyohei Watanabe¹, Masayoshi Kiryu¹, Ryo Kurosawa¹, Kenichi Takeuchi², Keiji Kitajima², Mitsukazu Nakanishi³, Hiromi Adachi³

This paper shows the shaking table test of dumper arranged concentration and Multi Story Shear walls arranged One Side using the experimental specimens.

1. はじめに

本報では、次世代制震構造建物の設計計画における 自由度向上の可能性を探ることを目的として実施した、 ダンパー集中配置および連層耐震壁片側配置した3層 鋼製立体骨組試験体の振動台実験について述べる.

2. 実験概要

(a)試験体概要 Table1 に試験体概要, Fig.1 に試験 体図, Photo.1 に振動台実験状況を示す. 試験体は, 鋼 製の3層立体骨組模型(純ラーメン架構)をベースとす る.なお、本実験では各試験体の捩れ挙動を防ぐため、 加振方向に直交する X1, X2 構面にブレースを配置し た.実験変数は、まず主架構のみの壁なし試験体を非 制震 A とし, 非制震 A に降伏耐力 100N のダンパーを 各層に均等配置したものを制震A,非制震Aに降伏耐 力 300N のダンパーを 3 層に集中配置したものを制震 A'とした. これら非制震 A, 制震 A, 制震 A' 試験体 をモデルAとする. モデルAに超弾性部材を模擬した 軸剛性 300N/mm のコイルばねを取付けた連層耐震壁 を Y1, Y2 構面に両側配置したものをモデル B(非制震 B, 制震 B, 制震 B')とする. モデル B のダンパー均 等配置の試験体制震 B が従来の次世代制震構造である. さらに本研究では、建物の設計計画における自由度を 向上させるために、モデル B の Y2 構面の連層耐震壁 を取外して Y1 構面のみに片側配置した試験体をモデ ル C(非制震 C、制震 C、制震 C')とする.なお、モ デル C の連層耐震壁の回転剛性は、コイルばねの設置 位置を変えることでモデル B の連層耐震壁の回転剛性 の 2 倍に調整されている.主架構は天井板と 4 本の柱 からなる 3 層 1 スパンの立体骨組模型であり、階高 700mm、頂部高さ 2100mm、柱スパン 1000mm とし、 総重量は非制震 A で約 8400N となっている.

(b) 測定項目 Y1, Y2 構面の各層天井板位置に取付 けたインダクタンス式変位計により水平変位を,各層 天井板に取付けた加速度計により重心加速度を,ダン パーに取り付けたロードセルにより摩擦ダンパーの作 用軸力を測定する.

(c) 入力地震動 Table2 に入力地震動の最大加速度 を示し, Fig.2 に入力地震動特性を限界耐力計算法の要 求スペクトル(h=5.0%)と比較して示す.入力地震動 は,告示波4波¹⁾とした.なお,実験では入力地震動 の時間軸を相似則に従い1/2とするとともに,試験体 主架構の応答が弾性範囲に納まるように,入力地震動

121

1: 日大理工・院・海建 Graduate Student, Nihon Univ.

2:青木あすなろ建設株式会社 Asunaro Aoki Construction Co., Ltd.

3 : 日大理工・教員・海建 Prof. Nihon Univ. Dr.Eng.

の入力倍率を変化させて用いた.最大入力加速度は, モデルA, 非制震B, C では約 120Gal (0.2 倍), 制震B, C及び制震B', C'では約310Gal(0.5倍)である.

3. 実験結果

(a)一次固有周期 Table3 に各モデルの一次固有周 期を示す. 試験体の固有周期は自由振動実験により得 られた時刻歴変位波形からゼロ・クロッシング法によ り算出した.非制震Bと非制震Cを比較すると両者の 値は一致しており、連層耐震壁の回転剛性を変えるこ とで、任意に一次固有周期を制御可能であることが確 認できた

さでさた.	Table3	Natu	ural period	[sec]
	非制	l震A	非制震B	非制震C
*		00	0.007	0.007

(b) 最大応答値の分布 Fig.3~6 に最大応答値のグ ラフを示す. 図中のグラフは各地震波による実験結果 の平均値をプロットしている.

・ダンパー集中配置による制震効果の検討

制震Aと制震A'の比較及び制震Bと制震B'の比 較から、ダンパー集中配置の制震効果を確認する.ま ず, 純ラーメン架構の制震 A と制震 A'の比較(Fig.3: 入力倍率 0.2)より、ダンパーを集中配置した3層の層 間変位は両者ほぼ同様の値となっているが、他の層に おいては制震 A'の応答が上昇している.一方,連層 耐震壁を配置したモデルBの比較(Fig.4:入力倍率0.5) より、制震 B、制震 B'共に各層の層間変位が一様で ほぼ同じ値を示すことがわかる.また,他の応答値も それぞれ同様の値となっていることから、連層耐震壁 を配置した次世代制震構造では、壁の効果により層間 変位が一様となり、ダンパーを集中配置しても均等配 置時と同様の制震効果が得られることがわかった.

連層耐震壁片側配置による制震効果の検討

制震 B と制震 C の比較(Fig.5)から, 連層耐震壁を片 側配置した時の制震効果について確認する. 制震 B と 制震 C の応答値がほぼ同じ値となっている. これより 試験体を捩れないように直交方向にブレースを配置し, 連層耐震壁の回転剛性を調整することで片側配置でも 両側配置と同様の制震効果が期待通りに得られること が確認できた.

・壁片側-ダンパー集中配置の制震効果の検討

制震 B と制震 C'の比較(Fig.6)から、ダンパーを集 中配置し、さらに連層耐震壁を片側配置したときの制 震効果を確認する. 制震 C'を制震 B と比較すると, 両者の応答値はほぼ同じ値となっていることより、本 構造システムにおける壁片側-ダンパー集中配置の有 効性が確認できる. なお, 図中には参考のため, 非制 震 A の応答値(比較のため応答値を 2.5 倍して表記)

もあわせて示した.次世代制震構造システムの試験体 の応答値は、応答加速度・応答層せん断力を含め全て の応答値において, 純ラーメン試験体のそれより下回 っていることが確認できる.

4. まとめ

以上,次世代制震構造システムのダンパーの集中配 置及び、連層耐震壁の片側配置の応答性状、有効性に ついて検討した結果,以下の知見を得た.

- ・連層耐震壁を配置した次世代制震構造物では層間変 位が一様となり、ダンパーを集中配置しても均等配 置時と同様の制震効果が得られた.
- ・捩れを拘束し、連層耐震壁を片側に配置して、連層 耐震壁の回転剛性を調整すれば片側配置でも両側配 置と同様の制震効果が期待通りに得られた.
- ・捩れを拘束し、連層耐震壁を片側に配置して、ダン パーをある1つの層に集中配置した場合においても 従来の次世代制震構造システムと同様の制震効果が 得られ、本構造システムにおける設計計画の自由度

-----制震A'

(入力倍率 0.2倍)

向上が可能であるこ

とが確認できた.

【参考文献】

