B-23

高速載荷及び衝撃載荷を受けるコンクリートのひずみ速度依存性に関する研究 その1 試験概要

Study on Effects of Strain Rate on Concrete under High Speed and Impact Loading Part1 Outline of the Test

○橫瀬秀行¹, 宇田川晃司¹, 佐藤壮大¹, 川口昇平², 白井孝治³, 高柳秀秋⁴, 小川勤⁵, 中西三和⁶, 安達洋⁶ Hideyuki Yokose¹,Koji Udagawa¹,Sota sato¹,Syohei Kawaguchi²,Koji Shirai³ Hideaki Takayanagi⁴,Tsutomu Ogawa⁵,Mitsukazu Nakanisi⁶,Hiromi Adachi⁶

This paper shows an examination summary for investigating the effects of strain rate on the concrete under high-speed Loading and Impact Loading.

1. はじめに

材料や部材に動的な外力が作用した際,それらの挙 動や破壊性状は,静的な外力を受けた時と異なること は既往の研究からよく知られている.特に衝撃レベル のひずみ速度範囲(10⁰~10²[1/s])では,材料強度の増加 傾向は静的レベル(ひずみ速度 10⁻⁶~10⁻³[1/s])及び地震 動レベル(ひずみ速度 10⁻³~10⁰[1/s])と異なり大きくな ることが報告されており,ひずみ速度が強度や破壊性 状に影響を及ぼすことが明らかになりつつある.しか し,動的外力下におけるコンクリートの挙動は未だ十 分な解明には至っておらず,材料レベルでの挙動や特 性を把握し,地震動及び衝撃レベルに対する建物の安 全性の合理的な評価手法を確立することが重要である.

そこで本研究では高速載荷及び衝撃載荷を受けるコ ンクリートのひずみ速度依存性を把握することを目的 とし,動的圧縮材料試験を行った.本報(その1)では試 験概要について述べる.

2. 試験方法

2.1 静的載荷試験装置

Table.1 に各試験装置の主な仕様を示す.静的載荷試 験装置は油圧サーボ式アクチュエータを利用した装置 である.本実験ではひずみ速度が目標値の1.2×10⁻⁵[1/s] となるように試験を行った.また,静的試験は各動的 試験の基準となるため,動的試験に合わせて実施した. 2.2 高速載荷試験装置

Fig.1 に高速載荷試験装置概要図を示す.高速載荷試 験は載荷速度による影響を調べるために用いられてお り,今回の試験では地震動レベルの内,ひずみ速度10⁻³, 10⁻², 10⁻¹[1/s]を目標として試験を実施した.

2.3 衝撃載荷試験装置(ホプキンソン棒法)

Fig.2 にホプキンソン棒法(以下, SHPB 法)試験装置 を示す. SHPB 法は古くから金属の衝撃材料試験に広 く用いられており、コンクリートに適用した SHPB 法 試験装置では白井ら^{[1][2][3]}が比較的寸法の大きい試験 体でデータの取得に成功している.本試験における衝 撃レベルを想定した試験はこの試験機を用いて行った. Table.1 The main specifications of each test equipment

3. 測定方法

3.1 静的載荷試験

静的載荷試験では、圧縮強度はロードセル、試験体 に生じるひずみはコンプレッソメータ及びコンクリー ト面に軸方向にひずみゲージ(全長 70[mm])と周方向 にひずみゲージ(全長 50[mm])を貼付し、計測を行った. 3.2 高速載荷試験

高速載荷試験では,静的試験と同様に圧縮強度はロ ードセル,試験体に生じるひずみは試験体の軸方向に 貼付した2枚のひずみゲージより計測した.

1 : 日本大学・院・海建 Graduate Student, Nihon Univ. 2 : 株式会社奥村組 Okumura Corporation

3:財団法人電力中央研究所 Central Research Institute of Electric Power Industry 4:株式会社メイテック Meitec Corporation

5:日本原子力発電株式会社 The Japan Atomic Power Company 6:日本大学・教員・海建 Pro.Nihon Univ.Dr Eng

3.3 SHPB 法載荷試験

Fig.3 に SHPB 法概略図を示す. SHPB 法は打撃棒, 及び入力棒,出力棒で構成される.試験体を入力棒と 出力棒の間に設置し、打撃棒を入力棒に衝突させるこ とで応力波を発生させ、発生した応力波が棒中を伝播 することで試験体に動的な負荷を与える試験方法であ る. 打撃棒から入力棒に伝わる応力波を入射波,入力 棒終端で反射するものを反射波、入力棒終端から試験 体及び出力棒に伝わるものを透過波とする. SHPB 法 では試験装置の性能上、ロードセルから応力等を計測 することができないため,図中のA,B,C点にひずみ ゲージを貼り, それぞれの点で計測したひずみを理論 式に代入し、試験体に伝播する応力等を算出する.

 $\bar{\sigma}(t) = \frac{E}{2} \{ \varepsilon_{I}(L_{2}, t) + \varepsilon_{R}(L_{2}, t) + \varepsilon_{T}(L_{2} + L_{S}, t) \}$ (1)平均ひずみ速度:

 $\bar{\dot{\epsilon}}(t) = = \frac{c}{L_s} \{ \epsilon_I (L_2, t) - \epsilon_R (L_2, t) - \epsilon_T (L_2 + L_S, t) \}$ (2) 平均ひずみ:

 $\bar{\epsilon}(t) = \int_0^t \frac{c}{L_r} \{ \epsilon_I (L_2, t) - \epsilon_R (L_2, t) - \epsilon_T (L_2 + L_S, t) \} dt$ (3)

ここで, E:入・出力棒のヤング率, ε_I:入力波のひ ずみ、 ϵ_{R} :反射波のひずみ、 ϵ_{T} :透過波のひずみ、t: 時間, c: 応力波の伝播速度, その他の記号は Fig.3 に 示すとおりである.

入・出力棒の各点(A, B, C)に軸方向に4枚ずつ貼 付けたひずみゲージ(ゲージ長 5[mm])より,応力波によ るひずみを計測し, A, B及びC点で計測されるひず みをそれぞれ $\epsilon_A(t)$, $\epsilon_B(t)$ 及び $\epsilon_C(t)$ とする.入力棒側の $\epsilon_A(t), \epsilon_B(t)には入射波と反射波が重畳しているため、計$ 測したひずみを一次元波動方程式に適用することで入 射波と反射波に分離し、(4)、(5)式を得る.

 $\varepsilon_{I}(l_{B}, t) = \varepsilon_{A}(t - \eta/c) - \varepsilon_{B}(t - \eta/c) + \varepsilon_{B}(l_{B}, t - 2\eta/c)$ (4) (5) $\epsilon_{R}(l_{B}, t) = \epsilon_{B}(t) - \epsilon_{I}(l_{B}, t)$

出力棒上の C 点より計測されたひず ま透過波となり,入射,反射,透過波を認 β)に位相をずらすことで(6), (7), (8)式

$c_1(1_2, t) - c_1(1_B, t \zeta/C) $	$\epsilon_I(l_2,$	$t = \epsilon_I (l_B)$	$t - \zeta/c$		(6)
--------------------------------------	-------------------	------------------------	---------------	--	-----

$$\varepsilon_{\rm R}(l_2, t) = \varepsilon_{\rm B}(l_{\rm B}, t+\zeta/c)$$

打撃棒

L

入射波

 $\epsilon_T \big(L_2 + L_S, \ t \big) = \epsilon_C (l_C, \ t + l_C/c)$

今回の試験では、ひずみは試験体の軸方向に貼付し た2枚のひずみゲージ(全長 50[mm])より計測を行い, 圧縮強度は前述した理論式(1), (2), (3)より算出した. 4. 静的・高速・衝撃載荷試験に用いた試験体

Table.2 にコンクリートの配合表を示す. コンクリー トに用いた材料は普通ポルトランドセメント(密度 3.16[g/cm³])及び JASS5^[4]の品質管理規定を満たす骨材 を使用した. 設計基準強度 21[N/mm²], 42[N/mm²]の 2 種類の配合(配合 L, H)で試験体を製作し, 標準養生及 び気中養生の2種類の方法で養生を行った. 試験体は コンクリート打設24時間後に形枠から脱型し,標準養 生試験体は試験の前日まで水中(20±2℃)で養生を行い, 気中養生試験体は試験当日まで 20±2℃, 60[%]R.Hの 恒温槽で養生を行った. 試験体端面は平滑度が ±0.1[mm]となるように研磨を行った.

Table.3 に試験体寸法及び試験体本数一覧を示す. 試 験体本数はパラメータ毎に3体の有効なデータを取る ことを目標としている. 高速載荷試験は直径 100[mm]× 高さ 200[mm]の円柱試験体を使用し、安定して試験デ ータを得ることができることから予備を含めて 60 体 用意した. SHPB 法は試験体内での応力波の収束性を 考慮し, 直径 100[mm]×高さ 100[mm]の円柱試験体とし た. また, 有効データを得られる割合が1割程度であ ることから各40体の計160体の試験体を用意した.

5. まとめ

以上,本報(その1)では試験概要を示した. 次報(そ の2)では試験結果について示す.

【新序】 試験を行うにあたって、多大な協力をして頂いたエンター電子工業(株)の加藤 政志氏,佐竹 信也氏, 北川 禅清氏,カワシマ計測の大塚 仁氏に深く感謝の意を表し,ここに記します.

.

(0)		Table.2 Concrete mixing table											
み ε _C (t)はそのま		成立 たい 一般	水セメ	ント	細骨材率 S/a [%]	スランプ [cm]	空気量 [%]	単位量					
		[N/mm ²]	比	i la la				セメント	*	細骨材	粗骨	·材	混和材
		W/C		24 45 9		0	4.5	951	160	950	(1)	(2)	2.51
式験体側端部(α,		42	41	t L	40.8	8	4.5	391	160	749	518	518	2.35
		Table.3 A list of specimen size and number											
を得る.								試験体本数					
		動的試験方法		試験体寸法	目標ひずみ速度		そ 配	配合L		配合H		_	
(0)	_				[mm]		[1/5]		標準	気中	標準	合計	
(7)	-]	0-3	5	5	5	5		-
(8)		高速載荷試験 (φ100×200		10 ⁻²		5	5	5	5	60	
						1	0-1	5	5	5	5	1	
()		SHPB法	試験	φ10	0×100	10 ⁰	$\sim 10^{2}$	40	40	40	40	160	
入力棒		試験体				出力棒							
A	₿	α	ß	}	C V								
l_A η	+	ζ>	-	< 1 _C									
L ₂	L_{s} L_{3}												
	友射波	√ ₹		> 逻	6過波	7						/	
Eigura 2 SUDD math	ad ac	homoti	i.										

T11 20

Figure.3 SHPB method schematic