長周期地震動に対する超高層建物の制震設計 その 2. D.M.同調システムを用いた超高層建物の制震設計 Response Control Design of High-rise Buildings against Long-Period Earthquake Ground Motion Part2. Response Control Design of High-rise Buildings by Tuned Dynamic Mass System

○郭鈞桓³, 古橋剛², 石丸辰治¹, 笠原俊⁴

*Chunhuan Kou³, Takeshi Furuhashi², Shinji Ishimaru¹, Shun Kasahara⁴

In this paper, the structure of narrow side of the Osaka Sakishima government building is modeled to a 50-story frame model. Using the simple design method for Tuned Dynamic Mass System to exam that the response control effect over the created long-period simulated earthquake motion.

2.1 はじめに

その1では、東北地方太平洋沖地震による長周期地 震動の分析及び建物の被害について示してきた.本報 では、実際に大阪府咲洲庁舎で観測された長周期地震 動を用いて長周期模擬地震動を作成する.また、大阪 府咲洲庁舎の短辺方向(1次固有周期:6.5秒)を参考と して50層フレームモデルを作成し、D.M.同調システム の簡易設計法を用いて、制震設計を行い、本報で作成 した長周期模擬地震動に対する制震効果を検討する. 2.2 長周期地震動の作成

既往の研究^[4]より水平 2 方向入力時において一番揺 れやすい方向の地震動は,NS-EW 平面上,応答スペク トルの最大値における地震動であると考えられる.本 報では,地震動の設定について,NS-EW 平面における 変位応答スペクトルが最大となる方向の地震動の位相 及び乱数位相を用いて,Figure2-1 に示した目標速度応

答スペクトルを満足するように,長周期模擬地震動を 作成する.Figure2-2,2-3 にその1で示した咲洲波を用 いて作成した長周期模擬地震動を示す.

Figure 2-1 Velocity Response Spectrum and Envelope Function

Figure 2-3 Simulated Earthquake Motion(Random-phase)

2.3 D.M.同調システムを用いた制震設計

本報の制震設計においては、石丸らが提案した D.M. 同調システムの簡易設計法^[2]用いて、2.2 で設定した長 周期模擬地震動を対象として、層間変形角を 1/100 以 内に納めることを目標としている.

D.M.同調システムの設計法の基本となる「相乗平均 則」(2-2)式を満足することで,定点理論に基づく最適 同調が簡易にできる.また,減衰性能は「付加剛比」 (2-1),(2-3)式により簡単に判断できることができる.

$$\kappa_k = \left(\frac{T_0}{T_\infty}\right)^2 - 1 \tag{2-1}$$

(2-2)

 $T_{\infty} = \sqrt{T_{0,1}T_{0,2}}$:相対変位の最適同調式

ここで,

T∞:減衰係数 c_dが∞時の構造物の1次モードの周期

T₀: 非制震時の構造物の1次モードの周期

T_{0,1}:減衰係数 c_dが0時の構造物の1次モードの周期

T_{0.2}:減衰係数 c_dが0時の構造物の2次モードの周期

$$h_1 = h_2 \approx (0.5 \sim 0.6) \sqrt{\frac{\kappa_k}{2 + \kappa_k}} : \text{最適粘性減衰定数}$$
(2-3)

Figure2-4 に示すフレームモデルに対して相対変位応 答倍率に対する D.M.同調システムの簡易設計法を行 う.非制震モデルは,幅 24[m],高さ 200[m]の 50 層 3 スパンであり,質量は各層 192[ton]と設定している. 非制震時の 1 次固有周期は 6.50[sec]であり,剛性比例 減衰として $h_i=1\%$ を与えている. Table 2-1 に非制震モ デルの固有値結果を示す.

1:株式会社 i2S2 2:日大理工・教員・建築 3:日大理工・院・建築 4:日大理工・学部・建築

Table 2-1 Eigenvalue of 50 story frame model

モード	T(s)	h	η^	
1	6.50	0.01	1.00	
2	1.99	0.03	1.00	
3	1.07	0.06	1.00	
4	0.74	0.09	1.00	
5	0.56	0.12	1.00	

D.M.同調システムとして、トグル機構を介して D.M. とオイルダンパーを設置する.なお、制震設計は2 パ ターン行い、1 次モードを制御する場合をモデル1、1 次及び2 次モードを同時に制御する場合をモデル2と する. Table2-2 にモデル1、2 の D.M.同調システムの 配置位置と、制御するモードを示す.Table2-3 には各制 震モデルが必要となるデバイスのパラメータを示す. また、Table 2-4 に制震モデルの固有値結果を示す. (剛性比例減衰として $h_1=1\%$ を与えている)

Figure2-4 50 story frame model

Table 2-2 Arrangement position and object mode of Tuned Dynamic Mass System

•	•			
前墨位墨	制御対象モード			
印印度加度	モデル1	モデル2		
0-10層間	1次モード	1次モード		
10-14層間	-	2次モード		

Table 2-3 Parameter of Tuned Dynamic Mass System

モデル		モデル1	モデル2	
D M [top]	0-10層間	4850	4850	
D.WI.[t011]	10-14層間	-	370	
cd[kN•s/m]	0-10層間	2900	2900	
	10-14層間	-	780	
固有周期[sec]	$T_{0,1}(T_{0,3})$	7.30	7.30(1.89)	
	$T_{0,2}(T_{0,4})$	5.07	5.07(1.35)	
	$T_{\infty,1}(T_{\infty,2})$	6.07	6.07(1.60)	
T∞(2-	2)式	6.08	6.08(1.60)	
补怀注意中举	h ₁ (h ₃)	0.13	0.13(0.13)	
柏住國最定效	h ₂ (h ₄)	0.14	0.14(0.13)	
最適粘性減衰	定数h (2-3)式	0.13	0.13(0.13)	

Table 2-4 Eigenvalue of model1 and model2(a) $\exists \vec{\mathcal{F}} \mathcal{N} 1$ (b) $\exists \vec{\mathcal{F}} \mathcal{N} 2$

モード	T(s)	h	η^	۱ſ	モード	T(s)	h	η^
1	6.86	0.14	0.73		1	6.89	0.15	0.71
2	5.43	0.16	0.22		2	5.42	0.16	0.25
3	1.70	0.05	0.97		3	1.80	0.16	0.69
4	0.93	0.08	0.99		4	1.42	0.18	0.22
5	0.64	0.11	0.99		5	0.88	0.09	0.95

2.4 地震応答解析

ここでは、制震効果を把握するために非制震モデル、 モデル1及びモデル2に対して長周期模擬地震動(2波) 及び BCJ-L2 波に対する地震応答解析を行った.

Figure2-5 の(a)に絶対加速度,(b)に層変形,及び(c) に層間変形角を示す.非制震モデルと比較すると,モ デル1では層変位と層間変形角が大幅低減されている ことが分かる.1,2次モードを同調させたモデル2で は層変位と層間変形角だけではなく,モデル1より絶 対加速度においても,低減していることがわかる.

Figure2-5 Result of response analysis

2.5 まとめ

本報では実際に大阪府咲洲庁舎で観測された長周期 地震動を用いて,設定した目標速度応答スペクトルを 満足するように長周期模擬地震動を作成した.また, 大阪府咲洲庁舎の短辺方向を 50 層フレームモデルに モデル化し, D.M.同調システムの簡易設計法を用いて, 制震設計を行い,作成した長周期模擬地震動及び BCJ-L2 波に対する制震効果を示した.

【参考文献】

[1] 石丸辰治:対震設計の方法 ダイナミックデザイン への誘い,建築技術,2008.7

[2] 石丸辰治,三上淳治,秦一平,古橋剛:D.M.同調 システムの簡易設計法,日本建築学会構造系論文集,

第75巻 第652号, 2010.6

[3] 大阪府 総務部: 咲洲庁舎の安全性等についての検 証結果, 2011,5

[4] 北村春幸:性能設計のための建築振動解析入門第二版, 彰国社, 2009.4