### B-65

# 接合部アスペクト比が PC 造ト型部分架構の力学的挙動に及ぼす影響に関する実験的研究 (その1実験概要と結果)

#### Effects of Aspect Ratio of Beam-Column joint Core on Mechanical Behavior of Prestressed Concrete

### **Exterior Beam-Column Joint Assemblies**

(Part1 Experiment Outline and Results)

 $\bigcirc$ 小松匠<sup>1</sup>, 小池正大<sup>1</sup>, 浜原正行<sup>2</sup>

Takumi Komatsu<sup>1</sup>, Syodai Koike<sup>1</sup>, Masayuki Hamahara<sup>2</sup>

Abstract: Reversed cyclic loading tests of three prestressed concrete exterior beam-column joint assemblies that failed inside the joint cores were conducted. This paper described experiment outline and results.

### 1. はじめに

近年,建築空間を有効利用するために梁せいが小さ い扁平梁を用いる機会が増えている.また,建物の外 周に架けられた梁の中には,梁せいが大きい壁梁も多 く見られる.この現状を考えると,柱・梁接合部の設 計には,扁平梁や壁梁からなる骨組にも対応した接合 部アスペクト比を考慮した設計法が求められる.

文献 1) では, 接合部アスペクト比とコンクリート 圧縮強度を実験要因とした PC 造十字型部分架構に対 する正負繰り返し載荷実験を行い, 以下の知見を得た. ①接合部平均せん断応力の最大値は接合部アスペクト 比には依存せず一定であった. ②文献 2)で提案されて いる接合部平均せん断力を用いた設計式は, 接合部ア スペクト比に関係なく適用可能であった.

本報告は, 接合部アスペクト比を実験要因とした 3 体の PC 造ト型部分架構に対する正負繰り返し載荷実 験の概要を述べると共に, 文献 2)の設計式がアスペク ト比の異なる PC 造ト型部分架構に適用が可能である か否かを実験的に検討するものである.

# 2. 実験概要

#### 2.1 試験体概要

本試験体は、文献 1)に倣い、接合部アスペクト比を 0.8、1.2、1.6、に設定した 3 体の PC 造ト型部分架構で ある. 試験体は、いずれも、階高 1.4m、スパン 2.4m とし、柱は RC 造で断面寸法が 250mm 角で主筋と帯筋 の配筋は 3 体とも統一されている. 梁は PC 造で幅が 200mm に統一されている. 梁せいは、アスペクト比 0.8 の試験体が 200mm、1.2 の試験体が 300mm、1.6 の試 験体が 400mm となっている. 柱の平均軸応力  $\sigma_o$ 、梁 の平均プレストレス  $\sigma_p$ も文献 1)に倣い、いずれの試験 体も 5MPa とした. コンクリートの設計用圧縮強度は、 柱・梁接合部の破壊が先行するように、24MPa とした.

試験体は,文献 2)の方法を用い,接合部破壊が柱, 梁の曲げ降伏に先行し,曲げ終局時においては梁降伏 が先行するように設計した. Table 1 に試験体概要, Fig.1 に梁と柱の断面, Fig.2 に接合部配筋詳細を示す.

| Table 1. Details of Test |            |            |            |                   |                         |                         |                                  |
|--------------------------|------------|------------|------------|-------------------|-------------------------|-------------------------|----------------------------------|
| 試験体                      | $D_b$ (mm) | $d_p$ (mm) | Pe<br>(kN) | $\frac{D_b}{D_c}$ | V <sub>ju</sub><br>(kN) | V <sub>mu</sub><br>(kN) | V <sub>ju</sub> /V <sub>mu</sub> |
| EPC-2                    | 200        | 100        | 200        | 0.8               | 39.7                    | 65.2                    | 0.61                             |
| EPC-3                    | 300        | 220        | 300        | 1.2               | 64.3                    | 154.6                   | 0.42                             |
| EPC-4                    | 400        | 290        | 400        | 1.6               | 93.1                    | 224.9                   | 0.41                             |
|                          |            |            |            |                   |                         |                         |                                  |

【共通因子】階高:H=1.4m, スパン:L=2.4m, 梁幅: $b_b=200mm$ 柱幅: $b_c=250mm$ , 柱せい: $D_c=250mm$ ,

コンクリート設計強度  $F_c=24$ MPa,

[柱]軸筋:12-D16(材種KSS785),

<sup>7-7</sup>:□D6-@50(帯筋比 p<sub>w</sub>=0.51%, 材種KSS785) [梁]主筋:3-D16(材種KSS785),

 $\chi_{\beta-\gamma}$ 、ロークロック (1年ACS 763),  $\chi_{\beta-\gamma}$ 、ロD6-@50(あばら筋比  $p_{wb}$ =0.64%, 材種KSS785) 平均プレストレス  $\sigma_p$ =5MPa, 柱の平均軸応力  $\sigma_o$ =5MPa 【記号】 $D_b$ :梁せい、 $d_p$ :梁のPC鋼棒に関する有効せい、

 記号】D<sub>b</sub>:梁せい, d<sub>p</sub>:梁のPC鋼棒に関する有効せい, P<sub>e</sub>:有効緊張力, D<sub>b</sub>/D<sub>c</sub>:接合部7スペクト比, D<sub>c</sub>:柱せい V<sub>ju</sub>:接合部せん断終局強度時の柱せん断力

V<sub>ju</sub>: 歯げ終局時の柱せん断力



Fig.2. Detail of beam-column joint cores

### 2.2 測定項目

**層間変形角** 層間変形角 *R* は, 柱頭と柱脚を不動点 とした鉄骨ゲージホルダーを設置し, 梁の載荷点位置 での試験体との相対変形 *δ*を 200mm 電気式変位計を 用いて測定し, (1)式によって評価した.

$$R = \frac{2 \cdot \delta}{L}$$
 ------(1)  
ここに, L:スパン,  $\delta$ :梁載荷点位置での相対変形

1:日大理工·院(前)·海建、Graduate Student of Oceanic Architecture & Engineering, Nihon University

2:日大理工·教員·海建、Prof., Dept. of Oceanic Architecture & Engineering, Science & Technology Nihon University

### 2.3 実験方法

<u>載荷装置</u> Fig.3 に載荷装置を示す.支持条件は,柱 脚をピン,柱頭は水平方向を拘束するローラーとした. 荷重は,梁先端部を 500kN 串型ジャッキによって鉛直 方向に正負繰り返し載荷することによって再現した. また,載荷中には 2000kN 圧縮ジャッキを用いて一定 軸力 312.5kN(平均軸応力  $\sigma_{e}$ =5MPa)を加えた.

**載荷ルール** 初期ひび割れ発生荷重で正負一回ずつ 繰り返した後,変位制御により梁の層間変形角 1/200 を基準部材角とし,その 1, 2, 3, 4, 6, 8 倍の変形 振幅で正負 2 回繰り返した.

#### 2.4 材料試験結果

**Table 2** にコンクリート調合表, **Table 3** にコンクリートとグラウトの材料試験結果, **Table 4** に鉄筋と PC 鋼棒の材料試験結果を示す.

#### 3. 実験結果

**最終破壊状況** Fig.4 に各試験体の破壊状況を示す. いずれの試験体も、まず梁の曲げひび割れが生じ、次 いで柱の曲げひび割れと柱梁接合部のせん断ひび割れ が発生した.その後は、梁せい 200mmの EPC-2 は梁 の曲げひび割れが大きく開口し、梁端部が圧壊した. 梁せい 300mmの EPC-3,梁せい 400mmの EPC-4 は、 いずれも柱・梁接合部のせん断ひび割れの開口と圧壊 によって耐力低下を起こした.

復元力特性 Fig.5 は各試験体の柱せん断力 Vcと層間 変形角 Rの関係を示したものである.いずれの試験体 も初期の段階では原点復帰傾向の強いS字型の履歴ル ープを描いたが,接合部のせん断劣化が進むに従って スリップ傾向の強い逆S字型の履歴ループに変化した.



Fig.3.Test setup

**Table 2.Mixing Proportion of Concrete** 

| Fc                                              | W/C  | <i>S/(S+G)</i> | 単位重量(kg/m³) |     |     |     |      |
|-------------------------------------------------|------|----------------|-------------|-----|-----|-----|------|
| (MPa)                                           | w/C  | (%)            | W           | С   | S   | G   | 混和剤  |
| 24                                              | 72.0 | 47.5           | 185         | 257 | 843 | 979 | 2.57 |
| 【記号】Fc : 設計基準強度 W : 単位水量 C : 単位セメント量 S : 単位細骨材量 |      |                |             |     |     |     |      |
| G : 単位粗骨材量 W/C : 水セメント比 S/(S+G) : 細骨材率          |      |                |             |     |     |     |      |

#### **Table 3. Mechanical Properties of Concrete**

| I                              |                 |                       |                  |                 |                   |  |
|--------------------------------|-----------------|-----------------------|------------------|-----------------|-------------------|--|
| 封驗休                            | コンジ             | クリート(F <sub>c</sub> = | グラウト             |                 |                   |  |
| 时间大学                           | $\sigma_B(MPa)$ | $E_c(\text{GPa})$     | $\sigma_T$ (MPa) | $\sigma_B(MPa)$ | $E_c(\text{GPa})$ |  |
| EPC-2                          | 32.7            | 32.3                  | 2.78             |                 |                   |  |
| EPC-3                          | 33.9            | 30.4                  | 2.80             | 80.4            | 16.7              |  |
| EPC-4                          | 32.1            | 31.2                  | 3.04             |                 |                   |  |
| 【記号】 σ :圧縮強度 F. ・ヤング係数 σ :割裂強度 |                 |                       |                  |                 |                   |  |

Table 4. Mechanical Properties of Steel

|                                                       |        |       | -                |                 |        |  |
|-------------------------------------------------------|--------|-------|------------------|-----------------|--------|--|
| 直径                                                    | 材種     | 用途    | $\sigma_y$ (MPa) | $\sigma_B(MPa)$ | E(GPa) |  |
| D6                                                    | KSS785 | 横補強筋  | 1105             | 1343            | 219    |  |
| D16                                                   | KSS785 | 柱,梁主筋 | 916              | 1157            | 196    |  |
| φ23                                                   | B種1号   | 緊張材   | 1010             | 1097            | 200    |  |
| φ32                                                   | B種1号   | 緊張材   | 997              | 1122            | 201    |  |
| 【記号】 $\sigma_{n}$ :降伏确度 $\sigma_{n}$ :引張确度 $E$ :ヤング係数 |        |       |                  |                 |        |  |



Fig.4.Joint Cores after testing

Fig.5.Column shear force versus story deformation angle

## 4. まとめ

1) 接合部アスペクト比を要因とした PC 造ト型部分 架構の実験概要を示した.

2) 梁せい 200mm の試験体は梁端部圧壊,梁せい
300mm,400mmの試験体は接合部劣化によって破壊した.

### 【参考文献】

1) 原井ほか: 接合部のアスペクト比が PC 骨組の力学的 挙動に及ぼす影響に関する実験的研究,日本建築学会 学術講演梗概集 構造, pp. 929-934, 2008

2) Hamahara et al. : Design for Shear of Prestressed Concrete Beam-Column Joint Cores, ASCE, Jour. of Structural Engineering, pp.1520-1530, Nov. 2007