B-87

損傷スペクトルを用いた RC 造建物の簡易損傷評価 (その4)東北地方太平洋沖地震における実被害状況

Simplified Damage Evaluation Method of RC Buildings by Damage Spectrum (Part 4) Outline of Damage Degree and Distribution during Tohoku-Chiho Taiheiyo-Oki Earthquake

田邉哲也¹, 渡部俊宗¹, 〇秋山洋輔², 西尾淳², 今井究³, 田嶋和樹⁴, 白井伸明⁴ Tetsuya Tanabe¹,Toshimune Watanabe¹,Yousuke Akiyama²,Atsushi Nishio²,Kiwamu Imai³,Kazuki Tajima⁴,Nobuaki Shirai⁴

Abstract: A lot of damages of buildings not only by Tsunami but also earthquake have been reported during. Tohoku-Chiho Taiheiyo-Oki earthquake. In Part 4, 6 damaged buildings to be investigated in Part 5 were selected and damage observations were described on the basis of the published reports. The target buildings are those constructed before and after 2000 ; that is, the enforcement of new seismic standard. In addition, buildings failing in the story sway mechanism of shear-type were included. Although the buildings after the new seismic standard did not suffered from severe damages, many of the old buildings heavily damaged.

1. はじめに

東北地方太平洋沖地震では、津波による被害だけで なく、地震動による建物被害も数多く報告されている ¹²⁾.報告された建物の損傷状況と損傷スペクトルを比 較するために、本報では被災した建物6棟の損傷状況 を示す.対象建物は、2000年以降の建物、新耐震基準 の建物、旧耐震の建物である.また、層崩壊するよう なせん断破壊型の建物も対象とした.

2. 建物の損傷状況

損傷スペクトルと建物の損傷状況を比較するために, 観測点周りの建物被害の状況をまとめる. 仙台市,水 戸市,郡山市,福島市の4つの観測地点周りの建物6 棟を対象とした.

2.1 建物 A(Fig 1(a))

仙台市にある中学校であり, RC 造4 階建てである. 校舎は1984 年に竣工. 桁行方向で,1階から4 階まで 損傷度 II 程度の曲げひび割れが梁に発生し,梁付け根 のかぶりコンクリートの剥落,梁ヒンジ領域のせん断 ひび割れが生じた.また,開口壁のせん断破壊(損傷度 V)も観察された.そのほか, RC 雑壁の損傷が激しく, 鉄筋の座屈が見られた.張間方向の重大な損傷は観察 されなかった.被災度区分は中破とされた.

2.2 建物 B(Fig 1(b))

1981 年に建設された仙台市青葉区内にある SRC 造 12 階建ての集合住宅である.低層階の玄関ドア周りの 非構造壁にせん断ひび割れが生じている.短スパンと なった間柱にせん断破壊が確認された.被災度区分は 小破と判断される.

2.3 建物 C(Fig 1(C))

1991 年に建設された福島県郡山市にある SRC 造 9 階建ての集合住宅である.1 階隅柱の柱脚および連層 壁脚部で鉄筋の座屈,コンクリートの圧縮破壊が見ら れた.また,1 階柱にせん断ひび割れ,付着割裂ひび 割れ,方立て壁のせん断破壊,非構造部材の被害も多 数観察されている.被災度区分は中破である.

2.4 建物 D(Fig 1(d))

2000年頃に建設された福島県郡山市にある RC 造 10 階建ての集合住宅である.2 階柱,各階梁および非構 造壁にせん断ひび割れが見られた.

2.5 建物 E(Fig 1(e))

茨城県水戸市内にある高校であり,敷地内には,1. 屋内運動場(1968年竣工,RC造3階建て),2.本館(2001 年竣工,RC造5階建て),3.普通・教室棟(1969年と1970 年竣工,RC造4階建て),4.特別教室棟(1981年竣工, RC造3階建て)が配置されている.

屋内運動場は、3 階で非構造壁のせん断破壊が見ら れ、小破と判断された.本館は特段の被害は見られな かった.普通・特別教室棟は多くの柱に曲げひび割れ やせん断ひび割れが観察された.被災度区分は中破と 判断された.特別教室棟は特段の被害は見られなかっ た.

2.6 建物 F(Fig 1(f))

1965年に建設された福島県福島市にある RC 造 3 階 建の大学校舎である. 校舎は北棟, 西棟, 東棟からな る Y 字型の建物である. 2 階中央付近の柱が軸崩壊し, 3 階床が落階している. また, 1 階では柱の多くがせん 断破壊している.

1:日大理工・学部・建築 2:日大理工・院・建築 3:株式会社 構造ソフト 4:日大理工・教員・建築

(a)Building A

(b)Building B

(e)Building E

(f)Building F

Figure 1 Damage Condition of Target Buildings

3. 建物の固有周期とパラメータの設定

損傷スペクトルと実際の損傷状況を比較するために は,建物の1次固有周期が必要である.建物の固有周 期Tは以下に示す式で略算した.

$$T = 0.02h$$
 (1)

ここで、h は建物高さである. 建物の階高を 3~4m と設定して T を算出した. (1)式を用いて算出した固有周期を Table 1 に示す. また、解析に用いるパラメータも合わせて示す. 旧耐震の建物 E-1,3,4 と F の設計用加速度応答スペクトルは、便宜的に新耐震設計法とした. また、終局塑性率 μ_{mon} は建物の損傷状況などを考慮して決定した. 例えば、建物 F は層崩壊しており、明らかにせん断破壊型の建物であるため、 $\mu_{mon}=2$ を設定した.また、建物 A は、梁の曲げひび割れやせん断ひび割れが混在しているため、 $\mu_{mon}=6$ と設定した.

4. まとめ

本報では,対象とする建物6棟の損傷状況を示した. 対象建物は,2000年以降の建物,新耐震基準の建物, 旧耐震の建物である.また,層崩壊するようなせん断

Building	Construction Year	Natural Period(s)	μ_{mon}	Design Acceleration Response Spectrum
А	1984	0.24~0.32	6	New Seismic Standard
В	1981	0.72~0.96	10	New Seismic Standard
С	1990	0.54~0.72	6	New Seismic Standard
D	Around 2000	0.6~0.8	6	New Seismic Standard
E-1	1968	0.18~0.24	6	New Seismic Standard
E-2	2001	0.3~0.4	10	Limit Strength Calculation
E-3	1969,1970	0.24~0.32	6	New Seismic Standard
E-4	1981	0.18~0.24	10	New Seismic Standard
F	1965	0.18~0.24	2	New Seismic Standard

Table 1 Natural Period and Parameters

破壊型の建物も対象とした.また,建物の1次固有周 期を略算式を用いて算出した.

- 5. 参考文献
- 日本建築学会:2011 年東北地方太平洋沖地震災害 調査速報,2011.
- [2] 国土交通省 国土技術政策総合研究所,独立行政 法人 建築研究所:平成23年(2011年)東北地方太 平洋沖地震調査研究(速報)(東日本大震災),2011.