FLUENT による低レイノルズ数における2次元噴流の数値解析

Numerical Analysis of Two-Dimensional Jet at Low Reynolds numbers using FLUENT

土谷 北斗¹, 中川 雄介², 村松 旦典³ Hokuto Tsuchiya¹, Yusuke Nakagawa², Akinori Muramatsu³

The development process and the critical Reynolds number of a jet have not been known well, because an experiment for the jet at low Reynolds numbers is very difficult. Numerical simulation is adopted to investigate the characteristics of two-dimensional jet at low Reynolds numbers. Commercial software, that is FLUENT, is used for numerical simulation.

1. 緒言

低レイノルズ数領域における噴流の研究は少なく, 理論的な研究においては,Bickley^[1]による境界層近似 による層流噴流の解析解が示され,またKakutaniら^[2] によって線形安定解析により臨界レイノルズ数が示さ れている.実験的な研究においては,Satoら^[3]による 研究が知られているが,実験が難しいため噴流の遷移 についての詳細は不明のままである.本研究では,汎 用のCFDソフトであるANSYS FLUENTを使用して 数値解析を行い,低レイノルズ数での噴流の特性を調 べることが目的である.ここでは,噴出レイノルズ数 が100の2次元噴流の非定常解析を行ったので,その 結果について報告する.

2. 計算領域および計算条件

支配方程式は、2次元の直交座標系で表された連続 の式と非定常非圧縮性ナヴィエ・ストークス方程式で ある. FLUENT ではこれらの支配方程式を有限体積法 により離散化し、SIMPLE 法により解いている.

計算領域を表 1 および図 1 に示す.計算要素は全て 長方形とした.空気噴流は幅 D_1 (= 1mm),長さ L_1 (= 1mm)の平行流路(ノズル)から、ノズル幅 D_2 (= 81mm), 長さ L_2 (= 180mm)の静止空気中(噴射部)へ噴出される. 座標系は図 1 に示すようにノズル出口中心を原点とし、 流れ方向に x 軸、それに直交する方向に y 軸とした.

計算領域の数および分割方法を図2と表2に示す. 噴射部においては、計算要素があまり多くならないように、公比7.3の等比級数により外部境界へ向けて計 算要素を拡大した.境界条件は図1に示されるように、 入り口の Velocity Inlet で平面ポアズイユ流れ(放物型) の速度分布を与えた.流出境界条件では Pressure Outlet とし、静圧が大気圧となるようにした.その他の計算 条件は表3に示す.噴出レイノルズ数の代表速度はノ ズル出口の断面平均速度 U₀、代表長さは D₁ である.

Table 1. Dimensions of calculating area

D_1	1 mm
D_2	81 mm
L_1	1 mm
L_2	180 mm

Table 2. Number of divisions for each direction

		分割数
ノズル部	主流方向	1
	垂直方向	10
噴射部	主流方向	300
	垂直方向	300

Figure 1. Geometry condition and boundary conditions

1:日大理工・学部・航宇 2:日大理工・大学院・航宇 3:日大理工・教員・航宇

計算アルゴリズム	SIMPLE 法	
乱流モデル	層流モデル	
離散化スキーム	2 次精度風上差分	
レイノルズ数 Re	100	
(噴出平均速度 U_{θ})	(1.583 m/s)	
噴出気体	空気	
動粘性係数 v	15.83 mm ² /s	
時間刻み幅 Δt	0.001 s	
無次元残差	10-6	
最大反復回数	20 回	
計算回数	5000 回	

Table 3. Calculating Condition

また、無次元残差は、解の残差が指定した値に収束した場合に反復を終了させるパラメータであり、今回は 10⁶のオーダーに設定した

3. 計算結果と考察

図3に各中心軸上における主流速度成分uの時間履 歴を示す. $x = 0 \sim 100$ mm においては,時間 t = 1 s で ほぼ定常になっていることがわかる. t = 5 s において 噴流が十分に発達したと考え, $x = 0 \sim 50$ mm までの速 度分布を図4に示す. 横軸は半値半幅 b で,縦軸は中 心軸上の速度 u_c で無次元化した. 図4中に実線で示さ れたBickleyによる二次元噴流の解析解^[1]と比較すると, 計算値では流速が負となる領域の存在など,解析解と は若干異なった結果が示された. 図5に速度コンター 図を示す. 図6の実験による可視化された画像^[4]と比 較すると,どちらも下流で流れが蛇行しながら発達し ていることがわかる.

今後は実験データなどとの比較を行ないながら、境 界条件や計算要素などについて検討していく.

4. 参考文献

[1] Bickley, W. G., "The Plane jet", Phil. Mag., Vol. 7, pp. 7 27-731, 1937.

[2] Kakutani, T. and Tatsumi, T., "The stability of a twodimensional laminar jet", JFM, vol. 4, pp261-275, 1958.

[3] Sato, H. and Sakao, F., "An experimental investigation of the instability of a two-dimensional jet at low Reynolds numbers", JFM, Vol. 20, pp. 337-352, 1964.

[4] 生板 翔平,「低レイノルズ数領域における二次元噴流の 発達過程」日本大学理工学研究科修士論文, 2009.

Figure 3. Time progress of the velocity at the center of the jet at Re = 100

Figure 4. Non-dimensional velocity profiles at the center of the jet at Re = 100

Figure 5. Contour of velocity at Re = 100 (t = 0.52 s)

Figure 6. Visualization of two dimensional Jet at Re = 100 (t = 0.5 s)