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Abstract: We propose novel error prediction and control methods of the multilevel fast multipole algorithm for electromagnetic 

scattering problems. The computational error of MLFMA can be predicted without performing any computational tests and can be 
controlled for optimizing truncation numbers with desired digits of computational accuracy. 

 

1. Introduction 

  The multilevel fast multipole algorithm (MLFMA) can 

treat electromagnetic scattering problems with large number 

of unknowns [1]. However, MLFMA has error sources in the 

computational process. In this paper, we propose novel error 

prediction and control methods of MLFMA for 

electromagnetic scattering problems. Using our method, the 

computational error for about one million unknowns 

problems can be precisely controlled under desired digits of 

accuracy. 

 

2. Formulation 

  We assume that the scatterers are perfectly conducting 

objects as shown in Figure 1. The electric field integral 

equation (EFIE) for conducting objects are given by  
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for r on the surface S, where t̂  is a tangential vector on S, 

)(J  is unknown surface current distribution, and  
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where )',( rrg  is the scalar Green’s function. EFIE is 

discretized by unknow current distribution expanded in 

appropriately chosen set of basis function )(
n

j  and 

testing function )(
n

t . Since this discretization, we can 

obtain the matrix equation for which to determine unknown 

current distribution. The computational time and requiring 

memory for solving matrix equation can be reduced to O(N 

log N) by using MLFMA where N is the number of 

unknowns. To do this, basis functions are divided into the 

localized groups as shown in Figure 2. The scalar Green’s 

function is expressed by addition theorem [3] and elementary 

identity such as 
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where )()1( 
l

h is the spherical Hankel function of the first 

kind, )(
l

P  is the Legendre polynomial, and L  is the 

truncation number. Computational error of MLFMA arises 

in this truncation process.  

The convergence rate of relative error of RCS can be 

predicted by using the following formula[4-7] : 
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Figure 1. Geometry and coordinate systems. 

 

 
Figure 2. Interaction between element i in box m’ and 

 element j in box m. 
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where ka is the box size,   is the interaction parameter, n 

is the number of buffers, and )max(A  is the maximum 

element of the matrix A . 
 

3. Computational Results 
  We perform the convergence test of computational error 

of MLFMA whose level is 4. The scatterer is the random 

rough surface. The size of the original flat plate is  66  . 

Figure 3 shows the relative error of the RCS for varying L4 

which is the truncation number of level four. The others 

level truncation numbers are fixed as optimum values. The 

lines indicate the predicted error given by Eq. (4). The 

relative error is defined by the difference of the 

computational results obtained by using four-level MLFMA 

and the reference solution. Since MoM cannot be treated 

large scale problems, the reference solution is considered as 

the RCS obtained by three-level MLFMA with optimum 
selection of truncation numbers. The convergence process 

of the relative error follows the solid line. Therefore the 

computational error can be predicted by using Eq. (4).  

We verify our method for a large scale problem. The 

scatterer consists of 3535  conducting spheres modeled 

by 470,400 curvilinear patches with 940,800 unknowns on 
x-y plane as shown in Figure 1. The bistatic RCS computed 

by using seven-level MLFMA is plotted in Figure 4. The 

truncation numbers of all the levels are selected to achieve 

the desired digits of accuracy d = 1E-3 using Eq. (4). We 

can confirm that the RCS is enhanced around 30 . 

Compared with the reference solution obtained by six-level 

MLFMA for the optimum selection of truncation numbers, 

the relative error can be fully controlled for all the 

observation angles in Figure 5. 

 

4. Conclusions 
  We have studied error analysis of MLFMA for 

electromagnetic scattering problems and propose the error 

prediction and control methods. The computational error 

can be estimated by using our prediction method. Using this 

technique, the computational error of large scale 
electromagnetic problems can be controlled under desired 

digits of accuracy. 
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Figure 3. Convergence test of the relative error for varying  
the number of unknowns N. 

 

Figure 4. Bistatic RCS of many conducting spheres. 

 

Figure 5. Relative error of the bistatic RCS for many 

 spheres. 
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