N-16

水系 PEG/SiO2ハイブリッドサスペンションにおけるナノ粒子の分散一凝集転移

Dispersion-Flocculation Transition of Nano-Particle in Hybrid Suspension of PEG/SiO₂ in H₂O

黄厦¹ 鈴木晶太² 星徹² 萩原俊紀² 矢野彰一郎² 澤口孝志² Xia Huang¹, Shouta Suzuki², Toru Hoshi², Toshiki Hagiwara², and Shoichiro Yano², Takashi Sawaguchi²

Abstract: In preparation of hybrids using blending poly (ethylene glycol) (PEG) with nano SiO_2 particle in H_2O , we measured the dispersion-flocculation transition behavior of the SiO_2 nano-particle in the hybrid suspension and. examined the effect of the formation of entanglement of polymer molecule in H_2O on the flocculation behavior of SiO_2 particle.

1. 緒言

我々は透明高分子中に無機微粒子をランダム分散させた透明有機-無機複合材料の創製を目指して研究を行っている.これまでの研究では、有機溶媒系におけるポリメタクリル酸メチル (PMMA) とコロイダルナノシリカ (SiO₂)の ブレンドにおいて、ポリマーの濃度がハイブリッドサスペンション中の SiO₂の分散 – 凝集転移及びハイブリッドフィ ルムの透明性に与える影響について検討してきた¹⁾.その結果、透明なハイブリッドサスペンションが急激に白濁する 臨界ポリマー濃度 (C^{*}) が存在するだけでなく、C^{*}はポリマーの分子量に依存し、分子量が低くなるとともに高濃度側 に現れるが、ある分子量以下では明確な C^{*}が出現しないことが明らかになった.また、C^{*}以下の濃度で調製した透明 ハイブリッドフィルム中の SiO₂ は二次凝集が抑制され、ランダムに分散し、PMMA の透明性を維持していることを見 出した.

本研究では、水分散ナノ粒子と水溶性ポリマーであるポリエチレングリコール (PEG) を用いて、水中での PEG/SiO₂ ハイブリッドサスペンションにおけるナノ粒子の分散—凝集転移について、有機溶媒系ハイブリッドサスペンションと の相異を比較検討した.

2. 実験方法

SiO₂ は扶桑化学工業(株) 製コロイダルナノシリカである. 有機溶媒系で用いたシリカはイソプロピルアルコール に分散している. サイズや型などの詳細は当日示すが, ハイブリッドサスペンションは, PMMAの良溶媒THFで所定の 初期シリカ濃度に調整したサスペンションにPMMAを添加して調製した. 水系で用いた水分散SiO₂は濃度20.1wt%, 平 均一次粒径12.3nm, 表面未修飾繭型である. また, PEG はSCIENTIFIC POLYMER PRODUCTS,INC.製であり, 重量平 均分子量(Mw)は、0.4×10⁴(PEG0.4), 1.0×10⁴(PEG1.0)と10.0×10⁴(PEG10)である. 有機溶媒系と同様にして, 水で所定濃度に調整したSiO₂サスペンションにPEG 粉末を少量ずつ添加して得られるハイブリッドサスペンションの UV-vis スペクトル(透過率)を測定し,分散ー凝集転移を検討した. また,ポリマー溶液の物性として,ウベロー デ粘度計を用いて相対粘度を測定した.

結果と考察

先ず,有機溶媒系の分散凝集転移に関して要約する¹⁾. Fig.1に分子量の異なる単分散PMMAにおける透過率(400 nm)の変化を示す.ポリマー濃度が高くなると,透過率が急激に減少する.この時のポリマー濃度をC*と呼ぶ. 分子量が高くなるとC*は低濃度にシフトし,ある分子量 以下では明確なC*が出現しないという特有の分子量依存 性が確認された.低濃度の時,高分子は孤立鎖として存 在し,孤立鎖が互いに接触する濃度(C₀*)を超えると, 絡み合いが起こり,SiO₂が凝集する.この絡み合いがC* と主な駆動力であると考察した.

Fig.1 polymer concentration dependence of transmittance at 400nm in UV-vis spectra of (monodisperse) PMMA/SiO₂ hybrid suspension in THF.

1:日大理工·院·応化 Graduate School of Science and

Technology, Nihon Univ. 2:日大理工・教員・応化 College of Science and Technology, Nihon University.

Fig.2 に THF 及び THF・IPA 混合溶媒における単分散 PMMA (Mw 29.8×10⁴) 溶液の相対粘度の濃度依存性を示 す.希薄溶液 (孤立鎖) 領域では,ポリマー濃度の上昇に 伴い,相対粘度は徐々に上昇した. $\log C = -0.5$ (0.3wt%) 以上の濃度では PMMA 鎖は相互侵入し,絡み合いが形成さ れ初め,相対粘度が急激に上昇した. この濃度範囲 ($\log C = -0.5 \sim 0.5 \ to 0.3 \sim 3 wt%$)は絡み合い形成領域と考えられる. Fig.1 に示されるように,この試料の C*は 3 wt%付近に現れ ている.つまり, C*はポリマー間の絡み合い相互作用の影 響を強く受けたことを強く示唆している.

一方,水系において、PEG 0.4 及び PEG 1.0 の DMF/GPC (PS 換算)によると、それぞれ Mw=6,2×10³、Mw/Mn=1,03 及び Mw=1.9×10⁴、Mw/Mn=1,03 であり、共に単分散試料 であるが、PEG10 は Mw=1.7×10⁵、Mw/Mn=2,65 と多分散試 料であった。

Fig.3 に PEG0.4 と PEG1.0 の PEG/SiO₂ハイブリッドサス ペンションの透過率(波長 400nm)の変化を示す.シリカ 無添加の場合,どの PEG においてもポリマー濃度 25wt%ま で透過率はほとんど変化しなかった. PEG0.4 では初期 SiO₂ 濃度 10wt%でもポリマー添加濃度 25wt%まで透過率はほと んど変化しなかった. PEG1.0 では初期シリカ濃度 7 と 10wt%の場合も,透過率が PEG 添加時に幾分低下するが, その後 25wt%まで 89%程度を維持した.初期シリカ濃度 15 及び 20.1wt%では,ポリマー添加(0.2wt%)と同時に透過 率は減少し始め,それぞれポリマー濃度 5 及び 3wt%で透過 率 80 及び 60%程度で安定した.しかしどちらの場合もポリ マー濃度の増加とともに透過率は幾分徐々に上昇した.こ れはポリマー濃度が高くなり SiO₂が再分散されたことによ ると考えられる.PEG10 における挙動は PEG0.4 と 1.0 と全 く異なった.詳細は当日示す.

Fig.4 に PEG 水溶液の相対粘度を示す. PEG0.4 と 1.0 は log C=0~1 (1 から 10wt%) で絡み合いが形成され粘度は 急激に上昇した. 多分散型 PEG10 の場合,幅広い分子量分 布から成るが,高い平均分子量のためより低濃度で粘度が 上昇した.

4. 結言

水系 PEG/SiO₂ハイブリッドサスペンションにおける分散 -凝集挙動は、有機溶媒系 PMMA/SiO₂の場合と全く異なっ た.水系では Fig.3 に現れた透過率の減少は PEG の添加と 同時に起こり、有機溶媒系 (Fig.1)のような C*は出現しな かった.Fig.4 に示される "絡み合い形成領域"と無関係な 挙動を示し、分散-凝集メカニズムについては、水と PEG とシリカの相互作用を考慮して今後の課題である.

1.6 29. 8 × 10⁴ 1.4 1.2 1 log ŋ _{rel} 0.8 0. 6 0.4 0.2 ۵ -1.5 0 0.5 -2.5 1.5 logC (wt%)

C*

Fig.2 Polymer concentration dependence of relative viscosity of PMMA Mw 29.8x10⁴ /THF IPA solution.

Fig.3 Polymer-concentration dependence of transmittance at 400nm in UV-vis spectra of PEG aqueous solution and PEG/SiO₂ suspension in H₂O.

Fig.4 Polymer concentration dependence of relative viscosity of $PEG(1.0x10^4)$ aqueous solution.

5. 参考文献

1) 澤口孝志, Polyfile, 3, 25-29, (2008); 表面, 48 (2), 1-9, (2010); 表面, 48 (3), 1-7, (2010)