銀ナノキャビティアレイ構造体の構築と光特性

Fabrication and Optical Characterization of Silver Nano-Cavity Array Structure

○松井 里紗¹,須川 晃資²
*Risa Matsui¹, Kosuke Sugawa²

Abstract: Surface Plasmon Resonance has various potentials for optical applications. Silver nano-voids are very promising for various optical applications due to their strong local electric fields. In this study, we have fabricated sophisticated silver nano-cavity arrays consisted of periodic nano-voids by utilizing nanosphere lithography. Furthermore, we have investigated their optical properties derived from occurring of surface plasmon resonance phenomenon.

1. 緒言

表面プラズモン共鳴 (Surface Plasmon Resonance; SPR) とは,金属ナノ構造体への光照射により誘起 される自由電子の集団振動に伴って発現する量子光 学効果の一種である.更に SPR 現象は,入射光と比 較して数~数万倍もの増強電場を局所的に発現する ことが知られており,近傍に配置された分子の蛍光 増強,ラマン散乱の増幅,光電変換効率の向上など 種々の応用が期待されている.一方で,金属は本質 的に分子の励起状態の失活(消光現象)を誘起する ため,局在電場の合目的的活用に至った例は未だ少 ない.

そこで、本研究では、サブマイクロメートルオー ダーの比較的広い空間に亘って強い局在電場の発現 が期待できる、金属ナノキャビティアレイ構造体に 着目した.^[1]この構造体は、金属薄膜上にサブマイ クロメートルオーダーのヴォイドが周期的に配列し た形態をとっている(Fig.1).本研究では、他の金 属種よりも強い局在電場の発現が期待できる、銀材 質から成るナノキャビティアレイ構造体の構築と、 その光特性の評価を行った.

Fig.1 Fabrication scheme of cavity array structure.

2. 実験

目的とする構造体は,透明電極上に作製された微 小粒子の2次元コロイド結晶を鋳型とし,これに金 属イオンの電解還元によって金属薄膜を修飾させ, 最後に粒子を除去することで作製した.具体的には, ポリスチレン粒子,およびシリカ粒子から成る2次 元コロイド結晶を Indium-tin-oxide(ITO)電極上に移 流集積法を活用して作製した.この電極を作用極と し,金イオンを含む電解質水溶液中で電解還元を行 い,次いで,銀イオンを含む電解質水溶液中で電解 還元を行うことによって銀薄膜を作製した.その後, ポリスチレンの場合はトルエンに一晩浸漬し,シリ カは超音波洗浄することで粒子を除去した.

得られた構造体の形状を走査型電子顕微鏡 (SEM),また,光学特性を種々の分光測定によっ て評価した. 結果・考察

鋳型となるポリスチレン(φ = 750 nm) およびシ リカ微粒子(φ = ca. 450 nm) から成る粒子膜の写真, および SEM 像を Fig. 2 に示す.

Fig. 2 Photographs and SEM images of polystyrene (left) and silica (right) colloidal crystals.

いずれの微粒子に関しても、単粒子膜で六方最密型に配列しており、また、均一な構造色が観察された.

次に両電極基板の消失スペクトルを Fig.3 に示す.

Fig. 3 Transparent extinction Spectra of polystyrene (left) and silica (right) colloidal crystals.

ポリスチレン微粒子では 1000 nm 付近に,シリカ 微粒子では 500 nm 付近に周期構造由来の回折ピー クが得られた.以上の結果から,いずれの微粒子に 関しても,2次元コロイド結晶が形成していること が確認された.

続いて,この2次元コロイド結晶に電解還元法に よって金属薄膜を電着させ,微粒子を除去した後の 構造体の SEM 像を Fig.4 に示す.

Fig.4 SEM images of silver nano-cavity arrays using polystyrene (left) and silica (right) colloidal crystals.

微粒子のコロイド結晶の形態が反映された,周期 的なキャビティ構造体の形成が確認された.

次に得られた構造体の透過吸収スペクトルを Fig. 5 に示す.

Fig.5 Absorption Spectra of silver nano-cavity arrays using polystyrene (left) and silica (right) colloidal crystals.

各構造体とも,特徴的な透過吸収スペクトルを示 した.発表では,これら光特性の解析と,局在電場 特性について詳細を述べる.

4. 参考文献

[1] R.Cole et al.,: "Understanding Plasmons in Nanoscale Voids", *Nano.Lett.*, Vol.7, No.7, pp.2094-2100, 2007