0-47

Rb 原子気体への光保存の効率向上を目指した実験系の改良

Improvement of experimental system for efficient photon storage in Rb vapor

○伊丹勇輔¹, 桑本剛²
*Yusuke Itami¹, Takeshi Kuwamoto²

Abstract: We develop an experimental system for efficient and long-time photon storage in Rb atomics vapor using an electromagnetically induced transparency (EIT). In this study, we refined an optical-phase-lock-loop system used for highly stabilizing the laser frequency in order to improve the efficiency of photon storage. The results showed that the efficiency increased by a factor of about two.

1. はじめに

極めてセキュリティの高い通信や情報処理を行うた めに,量子力学の原理を応用した量子通信・量子情報 処理が大きな注目を集めている.これらを実現するに は,量子メモリーの実現が必須であり,2000年に FleischhauerとLukin[1]によって,電磁誘起透明化(EIT) を利用した量子メモリーのための理論提案が行われた ことで,この量子メモリーの研究は活発に行われてき ている.

我々の研究室では、EIT を用い、⁸⁷Rb気体原子へ光 保存する事に成功している.その後、使用する2台の レーザーの相対周波数を安定化させる、光位相同期シ ステムの導入により、光保存時間を2倍程度伸ばすこ とにも成功した.今回、光位相同期システム及び⁸⁷Rb 気体セル温調システムのさらなる改良をしたことで、 原子集団へのパルス光の保存効率向上を達成したので 報告する.

2. 電磁誘起透明化とは

電磁誘起透明化 (Electromagnetically Induced Transparency: EIT) は、3準位原子と2つの共鳴光(電磁波)の相互作用により起こる特異な現象である.本実験では⁸⁷Rb原子を用いる(Fig.1). EIT が現れるには、2つの共鳴光 (Fig.1 においては Prove Light と Control Light)の周波数が、原子の遷移周波数付近でなければならない.また、コントロール光 (Control Light)強度はプローブ光 (Probe Light)強度の10~100倍である.

プローブ光の群速度は

$$V_{g} = \frac{c}{1 + \frac{g^{2}N}{\left|\Omega\right|^{2}}}$$

と表せる. ここで, c:光速, g:原子と光の結合 定数, N:原子数, Ω:コントロール光のラビ周波 数となっている.

Fig.1. Energy diagram of D1 line of ⁸⁷Rb atoms.

コントロール光が照射されなければ、プローブ光は ⁸⁷Rb原子気体内で停止(保存)することになる。逆 に、照射されればプローブ光は⁸⁷Rb原子気体内を透 過(再生)することになる.

3. 光位相同期システム

我々が使用しているレーザーは、非常に線幅の 狭 い単一光源であるが、僅かな温度変化や振動などで周 波数変動が生じてしまう.ここで、コントロー ル光の周波数ω_cは Fig.1 より F=2↔F'=2 の共鳴周波数 $ω_{23}$ に近いとし、同様にプローブ光の周波数 $ω_p$ も F=1↔F'=2 の共鳴周波数 $ω_{13}$ に近いとする。EIT 効果が 表れるのはレーザーの相対周波数差 $ω_p - ω_c = ω_{12}$ (F=1↔F=2 共鳴周波数)の時である.よって、2つの レーザーの周波数差が $ω_{12}$ からずれてしまうと EIT が 起こらなくなる.コントロール光とプローブ光の周波 数ゆらぎを Δ_c , Δ_p とすると,相対周波数ゆらぎ $\Delta_p - \Delta_c$ を常に0に保つためのフィードバック制御システムが

光位相同期である[2]. コントロール光とプローブ光を 重ねることによって生じる光ビート信号の周波数変 動が0になるようにレーザー周波数を制御すること で相対周波数ゆらぎの抑制を行う.

^{1:}日大理工・院・量子 2:日大・量科研

4. システムの高度化

本研究では、プローブレーザーへの注入電流を高速 制御する高速電流コントローラの改良と⁸⁷Rb気体セル の温度を安定化させる温調システムの導入により実験 系を高度化した。

4.1 高速電流コントローラ

高速電流コントローラはプローブレーザーとそれに 電流を供給する主電流コントローラの間に取り付けら れており,主電流コントローラでは実現できない高速 電流制御を行い,コントロールレーザーに同期させる. 高速電流コントローラは,内部のJFETのゲート入力に 高速制御電圧を入力する事で,ドレイン-ソース間電流 を高速に変化させられる.これにより, プローブレ ーザー周波数の高速制御を行う.今回,多種類のJFET 素子の特性を綿密に調べ,より適切なJFETを選択した.

4.2 セル温調システム

実験では、セル内の Rb 蒸気密度を上げるために、セ ルを 70 度程度に保つ必要がある.今までは、磁場発生 を抑制するよう設計した電熱線で温度制御をしていた が、完全には磁場発生を抑制しきれず、データ取得時 は電熱線に流す電流を切っていた.そのため、データ 取得時にセル温度は常に変動していた.今回、磁場発 生の完全抑制およびセル温度の一定化を行うため、温 水循環によるセル温度制御システムを開発した.

5. 光保存実験

実験系を Fig.2 に示す. プローブおよびコントロー ルレーザー光は,光スイッチとして用いる. 音響光 学素子(AOM)を通過したあと PBS で分割され,一 方は光位相同期のための高速フォトディテクター (hi-speed PD) に入る. もう一方は, Rb セルへ送ら れる. Hi-speed PD で検出されたプローブ光およびコ ントロール光のビート信号は, 6.834GHzの基準信号 (ビート信号より 30MHz 周波数が低い)用いて, MHz オーダーの信号に周波数変換される. そして, 位相・周波数比較器に送られ,レーザー周波数の安 定化のための制御信号が作られる.

Rb セルへ送られたプローブ光とコントロール光は 重ねられてセルを通過し,再び PBS で分けられる. 原子内に保存され,その後再生されたプローブ光の 信号はアバランシェフォトディテクターで検出され る.

6. 実験結果

今回の実験結果を Fig.3 に示す.赤が旧システムの

保存実験, 青が新システムでの保存実験の結果である. プローブパルス光の原子への保存効率はそれぞれ 31% と 65% であり, 効率は約 2 倍に増大した.保存時間を 5 μ s 間隔で 5 μ s から 30 μ s で変えた結果も同様で, 平均 でも約2倍の効率向上となっている.

Fig.2.Experimental setup of photon storage. Here, PBS: polarization beam splitter, PD: photo detector, APD: avalanche photo detector, AOM: acousto optic modulator.

Fig.3.Results of photon storage experiments(storage time : 5μ s). Red line : old system. Blue line : new system

7. まとめ

電磁誘起透明化による原子への光の保存実験にお いて、装置の改良をすることで、保存効率を向上さ せることに成功した. 今後、保存時間の延長を目標 としたい. さらに、量子もつれ状態の保存も目指す.

8. 参考文献

[1] M. Fleischhauer, M. D. Lukin, *Phys. Rev. Lett.* 84, 5094(2000)

[2] 松本和也,修士論文.(2011)