\mathcal{C}－representations of Mixed Abelian Groups

Takeshi Yasuda＊

We intend to give a mixed group B_{1} which is an extension of a direct $\operatorname{sum} \oplus_{p \in \mathbf{P}}\left\langle a_{p}\right\rangle$ by a completely decomposable group C of finite rank，where $\left\langle a_{p}\right\rangle$ is a cyclic group of order p^{t} ． Further we obtain \mathcal{C}－representations of B_{1} to investigate the structures of B_{1} and derive the local－global properties on p－basic subgroups of B_{1} ．

First，let $p_{1}=2, p_{2}=3, \ldots$ be a listing of the prime numbers in increasing order and $\left(l_{j 1}, l_{j 2}, \ldots, l_{j i}, \ldots\right)$ a sequence of nonnegative integers for $j=1, \ldots, n$ ．Define C by the di－ rect sum of rational groups $C_{j}=\left\langle\frac{1}{p_{i}}, \ldots, \frac{1}{p_{i}^{l_{i j}}}\right\rangle_{i \in \mathbf{N}}$ of type $\mathbf{t}\left(C_{j}\right)=\left(l_{j 1}, l_{j 2}, \ldots, l_{j i}, \ldots\right)$ ，one for each j ，i．e．，$C=\oplus_{j=1, \ldots, n} C_{j}$ ．Then any element $\frac{m_{j}}{n_{j}}$ of C_{j} can be written in the form $\frac{m_{j}}{n_{j}}=s_{j}+\sum_{1 \leq i \leq I_{j}} \frac{r_{j i}}{p_{i}^{\alpha_{i}}}$, where $n_{j}=\prod_{1 \leq i \leq I_{j}} p_{i}^{\alpha_{i}}\left(0 \leq \alpha_{i} \leq l_{j i}\right), m_{j}, s_{j}, r_{j i} \in \mathbf{Z}, 0 \leq r_{j i}<$ $p_{i}^{\alpha_{i}}$ ．Also let $B^{\left(p_{l}\right)}=\left\langle d_{j 0}^{(l)}, d_{j p_{i}}^{(l)}, \ldots, d_{j p_{i}{ }^{l_{j i}}}^{(l)}, a_{p_{l}}^{(l)}\right\rangle_{i \in \mathbf{N}, j=1, \ldots, n}$ be a p_{l}－mixed group defined as fol－ lows ：it is generated by elements $d_{j 0}^{(l)}, d_{j p_{i}{ }^{k}}^{(l)}\left(1 \leq k \leq l_{j i}, i \in \mathbf{N}\right), a_{p_{l}}^{(l)}$ such that $p_{i} d_{j p_{i}{ }^{k}}^{(l)}=$ $d_{j p_{i}{ }^{k-1}}^{(l)}\left(2 \leq k \leq l_{j i}\right), p_{i} d_{j p_{i}}^{(l)}=d_{j 0}^{(l)}, p_{l}^{t_{l}} a_{p_{l}}^{(l)}=0^{(l)}$ ．Then $B^{\left(p_{l}\right)}=C^{\left(p_{l}\right)} \oplus A^{\left(p_{l}\right)}$ with $C^{\left(p_{l}\right)}=$ $\left\langle d_{j 0}^{(l)}, d_{j p_{i}}^{(l)}, \ldots, d_{j p_{i}}^{(l)}{ }_{j i}\right\rangle_{i \in \mathbf{N}, j=1, \ldots, n}$ and $A^{\left(p_{l}\right)}=\left\langle a_{p_{l}}^{(l)}\right\rangle$ ．The correspondence $\sum_{j=1, \ldots, n} \nu_{j}\left(s_{j}+\sum_{1 \leq i \leq I_{j}} \frac{r_{j i}}{p_{i}^{\alpha_{i}}}\right) \longmapsto \sum_{j=1, \ldots, n}\left\{s_{j}\left(d_{j 0}^{(l)}+A^{\left(p_{l}\right)}\right)+\sum_{1 \leq i \leq I_{j}} r_{j i}\left(d_{j p_{i}^{\alpha_{i}}}^{(l)}+A^{\left(p_{l}\right)}\right)\right\}$ induces an isomorphism $\kappa_{\left(p_{l}\right)}$ from C onto $B^{\left(p_{l}\right)} / A^{\left(p_{l}\right)}$ ，where the coordinate injection $\nu_{j}: \frac{m_{j}}{n_{j}} \longmapsto$ $\left(0, \ldots, 0, \frac{m_{j}}{n_{j}}, 0, \ldots, 0\right) \in C$ ．And $\left(B^{\left(p_{l}\right)}, \kappa_{\left(p_{l}\right)}\right)$ is a $\left(C, \kappa_{\left(p_{l}\right)}\right)$－$p_{l}$－mixed group．

Next，we shall construct a mixed group B_{1} such that the p_{l}－localization $\overline{B_{1 p_{l}}}$ of B_{1} is isomor－ phic to $B^{\left(p_{l}\right)}$ for any p_{l} ．Define $A_{1}=\oplus_{l \in \mathbf{N}}\left\langle a_{p_{l}}\right\rangle$ with $o\left(a_{p_{l}}\right)=p_{l}^{t_{l}}$ ，then A_{1} is the torsion part of $\prod_{l \in \mathbf{N}}\left\langle a_{p_{l}}\right\rangle$ ．Consider $b_{j 0}=\left(\widetilde{\epsilon_{j l}} a_{p_{l}}\right)_{l \in \mathbf{N}} \in \prod_{l \in \mathbf{N}}\left\langle a_{p_{l}}\right\rangle$ ，where $\widetilde{\epsilon_{j l}}=0$ if $l \equiv j \bmod n$ or $\widetilde{\epsilon_{j l}}=1$ if $l \not \equiv j \bmod n$ ．For $i \neq l$ ，the equation $p_{i}^{k} x=\widetilde{\epsilon_{j l}} a_{p_{l}}$ is uniquely solvable in $\left\langle\widetilde{\epsilon_{j l}} a_{p_{l}}\right\rangle$ ，thus $\prod_{l \in \mathbf{N}}\left\langle a_{p_{l}}\right\rangle$ contains unique elements $b_{j p_{i}^{k}}(i \in \mathbf{N}, j=1, \ldots, n)$ such that $p_{i} b_{j p_{i}^{k}}=b_{j p_{i}^{k-1}}, p_{i} b_{j p_{i}}=b_{j 0}-\widetilde{\epsilon_{j i}} a_{p_{i}}$ ． Put $B_{1}=\left\langle A_{1}, b_{j 0}, b_{j p_{i}}, \ldots, b_{j p_{i}}{ }^{l_{j i}}\right\rangle_{i \in \mathbf{N}, j=1, \ldots, n}$ in $\prod_{l \in \mathbf{N}}\left\langle a_{p_{l}}\right\rangle$ and $\bar{b}=b+A_{1}$ for any $b \in B_{1}$ ，then A_{1} is the torsion part of B_{1} and $B_{1} / A_{1}=\left\langle\overline{b_{j 0}}, \overline{b_{j p_{i}}}, \ldots, \overline{b_{j p_{i}{ }^{l_{j i}}}}\right\rangle_{i \in \mathbf{N}, j=1, \ldots, n}$ is a torsion－free group． For every $\nu_{j}(1), \nu_{j}\left(\frac{1}{p_{i}^{k}}\right) \in C$ ，the correspondence $\nu_{j}(1) \mapsto \overline{b_{j 0}}, \nu_{j}\left(\frac{1}{p_{i}^{k}}\right) \mapsto \overline{b_{j p_{i}}{ }^{k}}$ induces an isomor－ phism κ_{1} from C onto B_{1} / A_{1} ．From $A_{1 p_{l}}^{*}=\oplus_{l \neq i \in \mathbf{N}}\left\langle a_{p_{i}}\right\rangle$ ，it follows that $\overline{B_{1 p_{l}}}=B_{1} / A_{1 p_{l}}^{*}=\left\langle a_{p_{l}}+\right.$ $\left.A_{1 p_{l}}^{*}, b_{j 0}+A_{1 p_{l}}^{*}, b_{j p_{i}}+A_{1 p_{l}}^{*}, \ldots, b_{j p_{i}{ }^{l_{j i}}}+A_{1 p_{l}}^{*}\right\rangle_{i \in \mathbf{N}, j=1, \ldots, n}$ ．Since the torsion part $\overline{A_{1 p_{l}}}=A_{1} / A_{1 p_{l}}^{*}=$ $\left\langle a_{p_{l}}+A_{1 p_{l}}^{*}\right\rangle$ of $\overline{B_{1 p_{l}}}$ is a bounded group，$\overline{B_{1 p_{l}}}$ splits，i．e．，$\overline{B_{1 p_{l}}}=\widetilde{C_{1 p_{l}}} \oplus \overline{A_{1 p_{l}}}$ ，where $\widetilde{C_{1 p_{l}}}=$ $\oplus_{j=1, \ldots, n}\left\{\sum_{i \in \mathbf{N}}\left\langle b_{j 0}-\widetilde{\epsilon_{j l}} a_{p_{l}}+A_{1 p_{l}}^{*}, b_{j p_{i}}-\widetilde{r_{j p_{i}}^{(l)}} \widetilde{\epsilon_{j l}} a_{p_{l}}+A_{1 p_{l}}^{*}, \ldots, b_{j p_{i}{ }^{l_{j i}}}-r_{j p_{i}{ }^{l}{ }^{(l i}} \widetilde{\epsilon_{j l}} a_{p_{l}}+A_{1 p_{l}}^{*}\right\rangle\right\}$ with relations $p_{i}^{k} r_{j p_{i}{ }^{k}}^{\widetilde{(l)}} \equiv 1 \bmod p_{l}^{t_{l}}$ if $i \neq l$ or $\widetilde{r_{j p_{l}{ }^{k}}^{(l)}}=0$ for certain $\widetilde{r_{j p_{i}{ }^{k}}^{(l)}} \in \mathbf{Z}$ ．However B_{1} does not split．Then $\left(\overline{B_{1 p_{l}}}, \overline{\kappa_{1 p_{l}}} \kappa_{1}\right)$ is a $\left(C, \overline{\kappa_{1 p_{l}}} \kappa_{1}\right)$－p p_{l}－mixed group，where $\overline{\kappa_{1 p_{l}}}$ is the canonical isomor－ phism from B_{1} / A_{1} onto $B_{1} / A_{1 p_{l}}^{*} / A_{1} / A_{1 p_{l}}^{*}$ ．

[^0]And with any elements $b_{j 0}-\widetilde{\epsilon_{j l}} a_{p_{l}}+A_{1 p_{l}}^{*}, b_{j p_{i}^{k}}-\widetilde{r_{j p_{i}^{k}}^{(l)}} \widetilde{\epsilon_{j l}} a_{p_{l}}+A_{1 p_{l}}^{*}(j=1, \ldots, n, \quad i \in \mathbf{N}, k=$ $\left.1, \ldots, l_{j i}\right), a_{p_{l}}+A_{1 p_{l}}^{*}$ of $\overline{B_{1 p_{l}}}$ ，we associate elements $d_{j 0}^{(l)}, d_{j p_{i}^{k}}^{(l)}\left(j=1, \ldots, n, i \in \mathbf{N}, k=1, \ldots, l_{j i}\right), a_{p_{l}}^{(l)}$ of $B^{\left(p_{l}\right)}$ respectively．This association gives rise to a C－isomorphism $\rho_{1 p_{l}}$ from $\left(\overline{B_{1 p_{l}}}, \overline{\kappa_{1 p_{l}}} \kappa_{1}\right)$ onto $\left(B^{\left(p_{l}\right)}, \kappa_{\left(p_{l}\right)}\right)$ for any p_{l} ．Hence $\overline{B_{1 p_{l}}} / \overline{A_{1 p_{l}}}$ is the direct sum of rank－one groups，one of type $\mathbf{t}\left(C_{j}\right)$ for $j=1, \ldots, n$ ．

Thereafter，we consider \mathcal{C}－representations of B_{1} ．For $u=\sum_{j=1, \ldots, n} \nu_{j}\left(s_{j}+\sum_{1 \leq i \leq I_{j}} \frac{r_{j i}}{p_{i}^{\alpha_{i}}}\right) \in C$ ， choose a representative $g_{1}(u)=\sum_{j=1, \ldots, n}\left\{s_{j} b_{j 0}+\sum_{1 \leq i \leq I_{j}} r_{j i} b_{j p_{i} \alpha_{i}}\right\}$ of the coset $\kappa_{1}(u)$ ．Further put $\overline{g_{1 p_{l}}}(u)=g_{1}(u)+A_{1 p_{l}}^{*}$ ，then $\overline{g_{1 p_{l}}}$ is a C－function from C to $\overline{B_{1 p_{l}}}$ relative to $\overline{\kappa_{1 p_{l}}} \kappa_{1}$ ．And the fol－ lowing holds $\rho_{1 p_{l}} \overline{g_{1 p_{l}}}(u)=\sum_{j=1, \ldots, n}\left\{s_{j} d_{j 0}^{(l)}+\sum_{1 \leq i \leq I_{j}} r_{j i} d_{j p_{i}}^{(l)}+s_{j} \widetilde{\epsilon_{j l}} a_{p_{l}}^{(l)}+\sum_{1 \leq i \leq I_{j}} r_{j i} \widetilde{r_{j p_{i}}^{(l)}} \widetilde{\epsilon_{j l}} a_{p_{l}}^{(l)}\right\}$ ． The $g_{(1)}^{\left(p_{l}\right)}=\rho_{1 p_{l}} \overline{g_{1 p_{l}}}$ becomes a C－function from C to $B^{\left(p_{l}\right)}$ relative to $\kappa_{\left(p_{l}\right)}$ ，which yields the factor set $f_{(1)}^{\left(p_{l}\right)}$ on C to $A^{\left(p_{l}\right)}$ as follows ：$f_{(1)}^{\left(p_{l}\right)}\left(u^{\prime}, u^{\prime \prime}\right)=-\sum_{j=1, \ldots, n}\left[\frac{r_{j l}^{\prime}+r_{j l}^{\prime \prime}}{p_{l}^{\alpha_{l}}}\right] \widetilde{\epsilon_{j l}} a_{p_{l}}^{(l)}$ with Gauss＇ symbol for $u^{\prime}=\sum_{j=1, \ldots, n} \nu_{j}\left(s_{j}^{\prime}+\sum_{1 \leq i \leq I_{j}} \frac{r_{j i}^{\prime}}{p_{i}^{\alpha_{i}}}\right)$ and $u^{\prime \prime}=\sum_{j=1, \ldots, n} \nu_{j}\left(s_{j}^{\prime \prime}+\sum_{1 \leq i \leq I_{j}} \frac{r_{j i}^{\prime \prime}}{p_{i}^{\alpha_{i}}}\right)$ of C ．

Next，put $\mathcal{C}=\left(C,\left[\left(B^{\left(p_{l}\right)}, \kappa_{\left(p_{l}\right)}\right)\right]_{l \in \mathbf{N}}\right), B=\prod_{l \in \mathbf{N}} B^{\left(p_{l}\right)}, A=\oplus_{l \in \mathbf{N}} A^{\left(p_{l}\right)}$ ，and let $\mu_{p_{l}}$ be a coordinate injection from $A^{\left(p_{l}\right)}$ into A acting via $a_{p_{l}} \mapsto\left(0, \cdots, 0, a_{p_{l}}, 0, \cdots\right)$ ．
In B ，put $g_{1}^{+}(u)=\left(g_{(1)}^{\left(p_{l}\right)}(u)\right)_{l \in \mathbf{N}} \in \prod_{l \in \mathbf{N}} B^{\left(p_{l}\right)}$ ，then we construct a mixed group B_{1}^{+}generated by adjoining $\left[g_{1}^{+}(u)\right]_{u \in C}$ to A ，and write $B_{1}^{+}=\left\langle A,\left[g_{1}^{+}(u)\right]_{u \in C}\right\rangle$ ．Here B_{1}^{+}is isomorphic to B_{1} ， and $B_{1}^{+}=B\left(\mathcal{C},\left[g_{(1)}^{\left(p_{l}\right)}(u)\right]_{u \in C, l \in \mathbf{N}}\right)$ is a \mathcal{C}－representation of B_{1} with respect to C－functions．

On the other hand，we construct a group B_{1}^{-}as the set of all pairs $(u, a)_{1} \in C \times A$ with the opration $\left(u^{\prime}, a^{\prime}\right)_{1}+\left(u^{\prime \prime}, a^{\prime \prime}\right)_{1}=\left(u^{\prime}+u^{\prime \prime}, a^{\prime}+a^{\prime \prime}+f_{(1)}\left(u^{\prime}, u^{\prime \prime}\right)\right)_{1}$ ，where $f_{(1)}$ is a factor set on C to A as follows ：$f_{(1)}\left(u^{\prime}, u^{\prime \prime}\right)=\sum_{l \in \mathbf{N}} \mu_{p_{l}} f_{(1)}^{\left(p_{l}\right)}\left(u^{\prime}, u^{\prime \prime}\right)=\sum_{l \in \mathbf{N}} \mu_{p_{l}}\left(-\sum_{j=1, \ldots, n}\left[\frac{r_{l}^{\prime}+r_{j l}^{\prime \prime}}{p_{l}^{\alpha_{l}}}\right] \widetilde{\epsilon_{j l}} a_{p_{l}}^{(l)}\right)$ ． Here B_{1}^{-}is isomorphic to B_{1} ，and $B_{1}^{-}=B\left(\mathcal{C},\left[f_{(1)}^{\left(p_{l}\right)}\left(u^{\prime}, u^{\prime \prime}\right)\right]_{u^{\prime}, u^{\prime \prime} \in C, l \in \mathbf{N}}\right)$ is a \mathcal{C}－representation of B_{1} with respect to factor sets．

Finally，we wish to apply this method to the study of p－basic subgroups．
Now，$B_{p}^{\left(p_{l}\right)}=\left(\oplus_{j=1, \ldots, n}\left\langle d_{j p^{{ }_{j}}}^{(l)}\right\rangle\right) \oplus\left\langle\delta_{l i_{0}} a_{p_{l}}^{(l)}\right\rangle$ is a p－basic subgroup of $B^{\left(p_{l}\right)}$ ，where $p=p_{i_{0}}, l_{j}=$ $l_{j i_{0}}$ and Kronecker＇s delta $\delta_{l i_{0}}$ ．With $\kappa_{\left(p_{l}\right)}^{-1}\left(d_{j p^{l_{j}}}^{(l)}+A^{\left(p_{l}\right)}\right)=\nu_{j}\left(\frac{1}{p^{l_{j}}}\right) \in C$ and C－function $g_{(1)}^{\left(p_{l}\right)}$ ， the following holds $h_{1 p_{l}}\left(\nu_{j}\left(\frac{1}{p^{l_{j}}}\right)\right)=d_{j p^{l_{j}}}^{(l)}-g_{(1)}^{\left(p_{l}\right)}\left(\nu_{j}\left(\frac{1}{p^{l_{j}}}\right)\right)=d_{j p^{l_{j}}}^{(l)}-\left(d_{j p^{l_{j}}}^{(l)}+\widetilde{r_{j p^{l_{j}}}^{(l)}} \widetilde{\epsilon_{j l}} a_{p_{l}}^{(l)}\right)=$ $-\widetilde{r_{j p^{l}}{ }^{(l)}} \widetilde{\epsilon_{j l}} a_{p_{l}}^{(l)}$ ，which shows that there does not exist a global p－basic subgroup $B_{1 p}$ of B_{1} such that $\overline{\left(B_{1 p}\right)_{p_{l}}}=\left(B_{1 p}+A_{1 p_{l}}^{*}\right) / A_{1 p_{l}}^{*}=\rho_{p_{l}}^{-1}\left(B_{p}^{\left(p_{l}\right)}\right)=\left(\oplus_{j=1, \ldots, n}\left\langle b_{j p^{l_{j}}}-\widetilde{r_{j p^{l_{j}}}^{(l)}} \widetilde{\epsilon_{j l}} a_{p_{l}}+A_{1 p_{l}}^{*}\right\rangle\right) \oplus\left\langle a_{p}+A_{1 p_{l}}^{*}\right\rangle$ ． However，choose $B_{p}^{\left(p_{l}\right)}=\left(\oplus_{j=1, \ldots, n}\left\langle d_{j p^{l_{j}}}^{(l)}+\widetilde{r_{j p^{l_{j}}}^{(l)}} \widetilde{\epsilon_{j l}} a_{p_{l}}^{(l)}\right\rangle\right) \oplus\left\langle\delta_{l i_{0}} a_{p_{l}}^{(l)}\right\rangle$ as a p－basic subgroup of $B^{\left(p_{l}\right)}$ ．Since $h_{1 p_{l}}\left(\nu_{j}\left(\frac{1}{p^{l_{j}}}\right)\right)=\left(d_{j p^{l_{j}}}^{(l)}+\widetilde{r_{j p^{l}}^{(l)}} \widetilde{\epsilon_{j l}} a_{p_{l}}^{(l)}\right)-g_{(1)}^{\left(p_{l}\right)}\left(\nu_{j}\left(\frac{1}{p^{l_{j}}}\right)\right)=0^{(l)}$ for any $l \in \mathbf{N}$ ，there exists a global p－basic subgroup $B_{1 p}=\left(\oplus_{j=1, \ldots, n}\left\langle b_{j p^{l_{j}}}\right\rangle\right) \oplus\left\langle a_{p}\right\rangle$ of B_{1} such that $\overline{\left(B_{1 p}\right)_{p_{l}}}=$ $\rho_{p_{l}}^{-1}\left(B_{p}^{\left(p_{l}\right)}\right)=\left(\oplus_{j=1, \ldots, n}\left\langle b_{j p_{j}{ }_{j}}+A_{1 p_{l}}^{*}\right\rangle\right) \oplus\left\langle a_{p}+A_{1 p_{l}}^{*}\right\rangle$.

References

L．Fuchs
［1］Infinite abelian groups，Vols．I，II，Academic Press，New York－London（1970，1973）．
［2］Abelian p－groups and mixed groups，Sém．Math．Sup．，70，Presse Univ．Montréal（1980）．

[^0]: ＊Tokyo Metropolitan Minamikatsushika High School

