# ベクトル空間と CHAIN 完備な半順序ベクトル空間の直積における分離定理について 

日本大学理工学部非常勤講師 渡辺 俊一＊（WATANABE Toshikazu）新潟大学大学院自然科学研究科 桑野 一成（KUWANO Issei）

The separation theorem is one of the most fundamental theorems in the functional analysis and the optimization theory．Let $X$ be a vector space and $A$ a subset of $X$ ．We denote ${ }^{l} A$ the linear span of $A$ and ${ }^{i} A$ denotes the relatively algebraic interior of $A$ ．If ${ }^{l} A=X$ ，then it coincide the core of $A$ ．We can obtain the separation theorem in the vector space as follows：

> Let $X$ be a vector space, $X^{*}$ its algebraic dual space, $A, B$ subsets of $X$ such that relatively algebraic interior ${ }^{i} A$ and ${ }^{i} B$ are non-empty. Then there exist a $u \in X^{*}, u \neq 0$, and $\lambda \in R$ such that $\langle u, x\rangle \leq \lambda \leq\langle u, y\rangle$ for any $x \in A$ and any $y \in B,\langle u, z\rangle \neq \lambda$ for at least one $z \in A \cup B$ if and only if ${ }^{i} A \cap^{i} B=\emptyset$.

It is known that this theorem establishes in case where the range space is a Dedekind complete Riesz space．It is known that the separation theorem establishes in the Cartesian product space of a vector space and a Dedekind complete ordered vector space；see［2，5］．Under certain assumptions，two non－void subset of product space can separated by an affine manifold of that product space．However，when we consider the Cartesian product of a vector space and a chain complete partially ordered vector space，two subsets in that product space are not separated by an affine manifold of that product space．
In this talk，we give a separation type theorem in the Cartesian product of a vector space and a chain complete partially ordered vector space（Theorem 1）using a scalarization method for a vector space．Scalarization methods are one of important methods in optimization theory， there are several applications，see［4］．

Let $R$ be the set of real numbers，$N$ the set of natural numbers，$I$ an indexed set，$Y$ an ordered vector space．This is to say that $Y$ is a real vector space endowed with an associated partial order $\leq_{K}$ induced by a proper convex cone $K(K \neq \emptyset, K \neq Y, K+K \subset K)$ as follows；

$$
x \leq_{K} y \text { if } y-x \in K \text { for } x, y \in Y .
$$

It is well known that $\leq_{K}$ is reflexive antisymmetric and transitive when $K$ is convex．Moreover， $\leq_{K}$ has invertible properties to vector space structure as translation and scalar multiplication． Let $Z$ be a subset of $Y$ ．The set $Z$ is called a chain if any two elements are comparable，that is，$x \leq_{K} y$ or $y \leq_{K} x$ for any $x, y \in Z . Y$ is said to be chain complete if every nonempty chain of $Y$ which is bounded from below has an infimum；$Y$ is said to be Dedekind complete if every nonempty subset of $Y$ which is bounded from below has an infimum．A partially ordered vector space is（upward）directed if for any $x, y \in Y$ there exists $z \in Y$ such that $x \leq_{K} z$ and $y \leq_{K} z$ ．Let $\bar{R}=R \cup\{\infty\}$ and for the function $\phi: Y \rightarrow \bar{R}$ ，we define the domain and epigraph by

$$
\mathrm{D}(\phi)=\{y \in Y \mid \phi(y)<\infty\}, \text { epi } \phi=\{(y, t) \in Y \times R \mid \phi(y)<t\} .
$$

$\phi$ is said to be convex if epi $\phi$ is a convex set．$\phi$ is said to be proper if $\mathrm{D}(\phi) \neq \emptyset$ and does not have the value $-\infty$ ．Let $B \subset Y . \phi$ is said to be $B$－monotone if $y_{1}-y_{2} \in B$ implies $\phi\left(y_{1}\right) \leq_{K} \phi\left(y_{2}\right)$ ．We assume that convex cone $K$ contains the rays generated by $k^{0} \in Y$ ，that is，

$$
\begin{equation*}
K+[0, \infty) \cdot k^{0} \subset K \tag{1}
\end{equation*}
$$

We move $-K$ along this ray and consider the set

$$
K^{\prime}=\left\{(y, t) \in Y \times R \mid y \in t k^{0}-K\right\} .
$$

＊講演者．

In this case，note that $K^{\prime}$ is of epigraph type．Since $K^{\prime}$ is epigraph type，we associated with $K$ and $k^{0}$ define the function by

$$
\phi_{K, k^{0}}(y)=\inf \left\{t \in R \mid y \in t k^{0}-K\right\} .
$$

Let $K$ be a closed proper convex cone and $k^{0} \in Y$ ．Then we have $\phi_{K, k^{0}}$ is $K$－monotone if and only if $K+K \subset K$ ．

Let $X$ be a vector space，$Y$ a chain complete directed partially ordered vector space．Let $f \in \mathcal{L}(X, Y), g \in \mathcal{L}(Y, Y), t_{0}$ a point in $R, K$ a proper closed convex cone in $Y, k^{0} \in Y \backslash\{0\}$ and $\phi_{K, k^{0}}$ be a scalarizing function from $Y$ to $R$ which is bounded and proper．Then

$$
H=\left\{(x, y) \in X \times Y \mid \phi_{K, k^{0}}(f(x)+g(y))=t_{0}\right\}
$$

is a subset in $X \times Y$ ．Let $A, B$ be nonempty subsets of $X \times Y$ ．It is said that $H$ separates $A$ and $B$ if

$$
\begin{aligned}
H_{-} & =\left\{(x, y) \in X \times Y \mid \phi_{K, k^{0}}(f(x)+g(y)) \leq t_{0}\right\} \supset A \\
H_{+} & =\left\{(x, y) \in X \times Y \mid \phi_{K, k^{0}}(f(x)+g(y)) \geq t_{0}\right\} \supset B
\end{aligned}
$$

Let $A$ be a nonempty subsets of $X \times Y$ ．The operator $P_{X}$ defined by $P_{X}(x, y)=x$ for any $(x, y) \in X \times Y$ is called the projection of $X \times Y$ onto $X$ and $P_{Y}$ defined by $P_{Y}(x, y)=y$ for any $(x, y) \in X \times Y$ is called the projection of $X \times Y$ onto $Y$ ，respectively．Then $P_{X} \in \mathcal{L}(X \times Y, X)$ and $P_{Y} \in \mathcal{L}(X \times Y, Y)$ ，respectively．We define

$$
\begin{gathered}
P_{X}(A)=\{x \in X \mid \text { there exists } y \in Y \text { such that }(x, y) \in A\} \\
P_{Y}(A)=\{y \in Y \mid \text { there exists } x \in X \text { such that }(x, y) \in A\}
\end{gathered}
$$

We take chain $C \subset P_{Y}(A-B)$ and define

$$
P_{X}^{C}(A-B)=\{x \in X \mid \text { there exists } y \in C \text { such that }(x, y) \in A-B\}
$$

A subset $A$ of $X \times Y$ is a cone if $\lambda>0$ implies $\lambda A \subset A$ ．The set

$$
\operatorname{Cone}(A)=\{\lambda z \in X \times Y \mid \lambda \geq 0, z \in A\}
$$

is called the cone span of $A$ ．If $A$ is convex，then $\operatorname{Cone}(A)$ is convex．We obtain the following separation theorem．

Theorem 1．Let $K$ be a proper closed convex cone in $Y, k^{0} \in K \backslash\{-K\}$ and $\phi_{K, k^{0}}$ a scalarizing function from $Y$ to $R$ ．Let $A$ and $B$ be subsets of $X \times Y$ such that $\operatorname{Cone}(A-B)$ is a convex cone，and $C$ be non－empty chain of $P_{Y}(A-B)$ ．Assume that the following（i）and（ii）hold：
（i） $0 \in{ }^{i} P_{X}^{C}(A-B)$ and ${ }^{l} P_{X}^{C}(A-B)=X$ ．
（ii）If $\left(x, y_{1}\right) \in A$ and $\left(x, y_{2}\right) \in B$ ，then $y_{1} \leq_{K} y_{2}$ holds．
Then there exists an $f \in \mathcal{L}(X, Y)$ and a point $t_{0} \in R$ such that $H=\{(x, y) \in X \times Y \mid$ $\left.\phi_{K, k^{0}}(f(x)-y)=t_{0}\right\}$ separates $A$ and $B$ ．

## References

［1］K．H．Elster and R．Nehse，Konjugierete operatoren und subdifferentiale，Math．Operationsforsch．u．Statist． 6 （1975），641－657．
［2］K．H．Elster and R．Nehse，Necessary and sufficient conditions for the Order－Completeness of partially ordered vector space，Math．Nachr． 81 （1978），301－311．
［3］M．M．Fel＇dman，Sufficient conditions for the existence of supporting operators for sublinear operators，Sibirsk． Mat．2． 16 （1975），132－138．（Russian）．
［4］R．Gopfert and Z．Tammer，Variational Mathods in Partially Ordered Vector Spaces，Springer－Verlag，Berlin， Heidelberg，New York， 2003.
［5］R．Nehse，Some general separation theorems，Math．Nachr． 84 （1978），319－327．

```
(渡辺 俊一)
E-mail address: wa-toshi@mti.biglobe.ne.jp
```

(桑野一成)
E-mail address: kuwano@m.sc.niigata-u.ac.jp

