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Abstract: Let M be a compact Riemann surface of genus g. Let Pi(i = 1, · · · , 4) be 4 distinct points on M . We
denote G(P1, P2, P3, P4) the Weierstrass gap set. We prove that, for large g, the upper bound of #G(P1, P2, P3, P4)
is attained if and only if M is hyperelliptic and |2Pi| = g12 .

1. Introduction
Let M be a compact Riemann surface of genus g ≥ 2, and let P1, · · · , Pn be n distinct points on M . The

Weierstrass gap set G(P1, · · · , Pn) is defined by

G(P1, · · · , Pn) := {(γ1, · · · , γn) ∈ Nn
0 | ̸ ∃meromorphic function f on M

whose pole divisor (f)∞ is γ1P1 + · · ·+ γnPn},

where N0 is the set of non-negative integers. In case n = 1, G(P1) is the set of Weierstrass gaps at P1, and the
cardinality #G(P1) is equal to g. But in case n ≥ 2, #G(P1, · · · , Pn) depends on M and {P1, · · · , Pn}(⊂ M).
Concerning #G(P1, · · · , Pn), there is a conjecture presented by Ballico and Kim([1]).

Conjecture Assume g is very large with respect to n. Then we have

#G(P1, · · · , Pn) ≤
∑

0≤m≤n

(
n

m

)(
g

m

)
2m −

(
g + n

n

)
, (1)

and the equality holds if and only if M is hyperelliptic and |2Pi| = g12(i = 1, .., n), where
(
n
m

)
is the binomial

coefficient.

This conjecture is true in case n = 2([6],[2]) and n = 3([3]). When M is hyperelliptic, the conjecture is also
true for general n([1]).

Here, we prove the conjecture affirmatively in case n = 4.

Theorem 1 (Main Theorem). Assume M is a compact Riemann surface with g = 11 or g ≥ 13. Then

#G(P1, · · · , P4) ≤
∑

0≤m≤4

(
4

m

)(
g

m

)
2m −

(
g + 4

4

)
(2)

= g(14 + 45g + 22g2 + 15g3)/24,

and the equality holds if and only if M is hyperelliptic and |2Pi| = g12.

2. Proof of Main Theorem
As mentioned above, this theorem is correct if M is hyperelliptic. Then it suffices to show the following

inequality.

Proposition 1. Let M be a non-hyperelliptic curve of genus g = 11 or g ≥ 13, and let P1, · · · , P4 be distinct
points on M . Then

#G(P1, · · · , P4) <
∑

0≤m≤4

(
4

m

)(
g

m

)
2m −

(
g + 4

4

)
. (3)

The author has already got the following result by showing (3) in case M is a d-gonal curve with d ≥ 5.

Proposition 2 ([4]). Let M be a d-gonal curve with d ≥ 2. That is, d is the smallest number attained by the
degree of a non-trivial meromorphic function on M . Moreover we assume d ̸= 3, 4 and g ≥ 5.

Then the inequality (2) is satisfied, and the equality holds if and only if M is hyperelliptic(i.e., d = 2) and
|2Pi| = g12.

Therefore Theorem 1 means that the condition d ̸= 3, 4 can be removed when g = 11 or g ≥ 13. The proof of

Theorem 1, in case d = 3 or 4, is done by pushing forward the methods in [4].

1一般教育

平成 23年度　日本大学理工学部　学術講演会論文集

 1363

P-6



Definition 1. Let n be a positive integer. For an arbitrary curve M of genus g ≥ 2 and distinct points P1, · · · ,Pn ∈
M , define

K(P1, · · · , Pn) := {Γ = γ1P1 + · · ·+ γnPn|
Γ is a canonical divisor on M,γi ≥ 0(i = 1, · · · , n)}.

In particular, for a hyperelliptic curve Mh of genus g and distinct points Qi ∈ Mh with |2Qi| = g12(i = 1, · · · , n),
Kh denotes K(Q1, · · · , Qn).

Since the canonical series of Mh is (g − 1)g12 , we have

#Kh =

(
g + n− 2

n− 1

)
. (4)

Moreover the following equality has been proved in [1].

#G(Q1, · · · , Qn) =
∑

0≤m≤n

(
n

m

)(
g

m

)
2m −

(
g + n

n

)
. (5)

In case n = 4, we also know the following result([4]).

Lemma 1. Put K = K(P1, P2, P3, P4) for distinct Pi(i = 1, · · · , 4) on a non-hyperellptic curve M . Points
Qi(i = 1, · · · , 4) are same as in Definition 1. Then

#G(Q1, Q2, Q3, Q4)−#G(P1, P2, P3, P4) ≥ g3 +
1

2
g2 − 1

2
g − 9#K. (6)

Therefore the proof of the inequality (3) is reduced to an estimation of #K. Actually we prove that the right
hand side of (6) is positive if M is d-gonal with d = 3, 4 and g = 11 or ≥ 13 by using the lemma ([5]) bellow.

Lemma 2. Assume that M is a d-gonal curve with d ≥ 3.
(i) Assume d ≥ 4, and let C be a positive integer defined by

C :=


(
[ 2g−2

3 ]+3
3

)
+

(
[ 2g−2

3 ]+2
3

)
(if 3 - 2g − 2),( 2g−2

3 +2
3

)
+

( 2g−2
3 +1
3

)
(if 3|2g − 2).

Here [r] = max{n|n ≤ r, n ∈ Z}. Then
#K(P1, P2, P3, P4) ≤ C. (7)

(ii) When d = 3 and g ≥ 11,

#K(P1, P2, P3, P4) ≤
(
[ 2g−2

3 ] + 3

3

)
. (8)
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