P－6

The Weierstrass Gap Sets for Quadruples on Compact Riemann Surfaces II

Naonori ISHII ${ }^{1}$

Abstract：Let M be a compact Riemann surface of genus g ．Let $P_{i}(i=1, \cdots, 4)$ be 4 distinct points on M ．We denote $G\left(P_{1}, P_{2}, P_{3}, P_{4}\right)$ the Weierstrass gap set．We prove that，for large g ，the upper bound of $\# G\left(P_{1}, P_{2}, P_{3}, P_{4}\right)$ is attained if and only if M is hyperelliptic and $\left|2 P_{i}\right|=g_{2}^{1}$ ．

1．Introduction
Let M be a compact Riemann surface of genus $g \geq 2$ ，and let P_{1}, \cdots, P_{n} be n distinct points on M ．The Weierstrass gap set $G\left(P_{1}, \cdots, P_{n}\right)$ is defined by

$$
\begin{array}{r}
G\left(P_{1}, \cdots, P_{n}\right):=\left\{\left(\gamma_{1}, \cdots, \gamma_{n}\right) \in \mathbb{N}_{0}^{n} \mid \nexists \text { meromorphic function } f \text { on } M\right. \\
\text { whose pole divisor } \left.(f)_{\infty} \text { is } \gamma_{1} P_{1}+\cdots+\gamma_{n} P_{n}\right\},
\end{array}
$$

where \mathbb{N}_{0} is the set of non－negative integers．In case $n=1, G\left(P_{1}\right)$ is the set of Weierstrass gaps at P_{1} ，and the cardinality $\# G\left(P_{1}\right)$ is equal to g ．But in case $n \geq 2, \# G\left(P_{1}, \cdots, P_{n}\right)$ depends on M and $\left\{P_{1}, \cdots, P_{n}\right\}(\subset M)$ ． Concerning $\# G\left(P_{1}, \cdots, P_{n}\right)$ ，there is a conjecture presented by Ballico and $\operatorname{Kim}([1])$ ．
Conjecture Assume g is very large with respect to n ．Then we have

$$
\begin{equation*}
\# G\left(P_{1}, \cdots, P_{n}\right) \leq \sum_{0 \leq m \leq n}\binom{n}{m}\binom{g}{m} 2^{m}-\binom{g+n}{n} \tag{1}
\end{equation*}
$$

and the equality holds if and only if M is hyperelliptic and $\left|2 P_{i}\right|=g_{2}^{1}(i=1, . ., n)$ ，where $\binom{n}{m}$ is the binomial coefficient．

This conjecture is true in case $n=2([6],[2])$ and $n=3([3])$ ．When M is hyperelliptic，the conjecture is also true for general $n([1])$ ．

Here，we prove the conjecture affirmatively in case $n=4$ ．
Theorem 1 （Main Theorem）．Assume M is a compact Riemann surface with $g=11$ or $g \geq 13$ ．Then

$$
\begin{align*}
\# G\left(P_{1}, \cdots, P_{4}\right) \leq & \sum_{0 \leq m \leq 4}\binom{4}{m}\binom{g}{m} 2^{m}-\binom{g+4}{4} \tag{2}\\
& =g\left(14+45 g+22 g^{2}+15 g^{3}\right) / 24
\end{align*}
$$

and the equality holds if and only if M is hyperelliptic and $\left|2 P_{i}\right|=g_{2}^{1}$ ．
2．Proof of Main Theorem
As mentioned above，this theorem is correct if M is hyperelliptic．Then it suffices to show the following inequality．

Proposition 1．Let M be a non－hyperelliptic curve of genus $g=11$ or $g \geq 13$ ，and let P_{1}, \cdots, P_{4} be distinct points on M ．Then

$$
\begin{equation*}
\# G\left(P_{1}, \cdots, P_{4}\right)<\sum_{0 \leq m \leq 4}\binom{4}{m}\binom{g}{m} 2^{m}-\binom{g+4}{4} \tag{3}
\end{equation*}
$$

The author has already got the following result by showing（3）in case M is a d－gonal curve with $d \geq 5$ ．
Proposition 2 （［4］）．Let M be a d－gonal curve with $d \geq 2$ ．That is，d is the smallest number attained by the degree of a non－trivial meromorphic function on M ．Moreover we assume $d \neq 3,4$ and $g \geq 5$ ．

Then the inequality（2）is satisfied，and the equality holds if and only if M is hyperelliptic（i．e．，$d=2$ ）and $\left|2 P_{i}\right|=g_{2}^{1}$ ．

Therefore Theorem 1 means that the condition $d \neq 3,4$ can be removed when $g=11$ or $g \geq 13$ ．The proof of Theorem 1，in case $d=3$ or 4，is done by pushing forward the methods in［4］．

Definition 1．Let n be a positive integer．For an arbitrary curve M of genus $g \geq 2$ and distinct points $P_{1}, \cdots, P_{n} \in$ M ，define

$$
\begin{aligned}
\mathcal{K}\left(P_{1}, \cdots, P_{n}\right):= & \left\{\Gamma=\gamma_{1} P_{1}+\cdots+\gamma_{n} P_{n} \mid\right. \\
& \left.\Gamma \text { is a canonical divisor on } M, \gamma_{i} \geq 0(i=1, \cdots, n)\right\}
\end{aligned}
$$

In particular，for a hyperelliptic curve M_{h} of genus g and distinct points $Q_{i} \in M_{h}$ with $\left|2 Q_{i}\right|=g_{2}^{1}(i=1, \cdots, n)$ ， \mathcal{K}_{h} denotes $\mathcal{K}\left(Q_{1}, \cdots, Q_{n}\right)$ ．

Since the canonical series of M_{h} is $(g-1) g_{2}^{1}$ ，we have

$$
\begin{equation*}
\# \mathcal{K}_{h}=\binom{g+n-2}{n-1} \tag{4}
\end{equation*}
$$

Moreover the following equality has been proved in［1］．

$$
\begin{equation*}
\# G\left(Q_{1}, \cdots, Q_{n}\right)=\sum_{0 \leq m \leq n}\binom{n}{m}\binom{g}{m} 2^{m}-\binom{g+n}{n} . \tag{5}
\end{equation*}
$$

In case $n=4$ ，we also know the following result（［4］）．
Lemma 1．Put $\mathcal{K}=\mathcal{K}\left(P_{1}, P_{2}, P_{3}, P_{4}\right)$ for distinct $P_{i}(i=1, \cdots, 4)$ on a non－hyperellptic curve M ．Points $Q_{i}(i=1, \cdots, 4)$ are same as in Definition 1．Then

$$
\begin{equation*}
\# G\left(Q_{1}, Q_{2}, Q_{3}, Q_{4}\right)-\# G\left(P_{1}, P_{2}, P_{3}, P_{4}\right) \geq g^{3}+\frac{1}{2} g^{2}-\frac{1}{2} g-9 \# \mathcal{K} \tag{6}
\end{equation*}
$$

Therefore the proof of the inequality（3）is reduced to an estimation of $\# \mathcal{K}$ ．Actually we prove that the right hand side of（6）is positive if M is d－gonal with $d=3,4$ and $g=11$ or ≥ 13 by using the lemma（［5］）bellow．

Lemma 2．Assume that M is a d－gonal curve with $d \geq 3$ ．
（i）Assume $d \geq 4$ ，and let C be a positive integer defined by

$$
C:= \begin{cases}\left(\frac{\left[\frac{2 g-2}{3}\right]+3}{3}\right)+\left(\frac{\left[\frac{2 g-2}{3}\right]+2}{3}\right) & (\text { if } 3 \nmid 2 g-2), \\ \left(\frac{2 g-2}{3}+2\right)+\left(\frac{2 g-2}{3}+1\right) & (\text { if } 3 \mid 2 g-2) .\end{cases}
$$

Here $[r]=\max \{n \mid n \leq r, n \in \mathbb{Z}\}$ ．Then

$$
\begin{equation*}
\# \mathcal{K}\left(P_{1}, P_{2}, P_{3}, P_{4}\right) \leq C \tag{7}
\end{equation*}
$$

（ii）When $d=3$ and $g \geq 11$ ，

$$
\begin{equation*}
\# \mathcal{K}\left(P_{1}, P_{2}, P_{3}, P_{4}\right) \leq\binom{\left[\frac{2 g-2}{3}\right]+3}{3} \tag{8}
\end{equation*}
$$

References

［1］E．Ballico and S．J．Kim，Weierstrass multiple loci of n－pointed algebraic curves，J．Algebra 199 （1998），455－ 471.
［2］M．Homma，The Weierstrass semigroup of points on a curve， Arch．Math． 647 （1996），337－348．
［3］N．Ishii，A certain graph obtained from a set of several points on a Riemann surface，Thukuba J．Math．23， No． 1 （1999），55－89．
［4］N．Ishii，Weierstress Gap Sets for Quadruples of Points on Compact Riemann Surfaces，J．Algebra 250 （2002），44－66．
［5］N．Ishii，Weierstress Gap Sets for Quadruples II，Bull Braz Math Soc．New Series 42，No． 2 （2011），243－258．
［6］S．J．Kim，On the index of the Weierstrass semigroup of a pair of points on a curve，Arch．Math． 62 （1994）， 73－82．

