# 連分数とユークリッドのアルゴリズム <br> Continued fractions and the Euclidean algorithm 

宮臣有紀（Miyatomi Yuki）${ }^{1}$

## Abstract

In this report，we discuss continued fractions．We show that a good rational approximations to a real number $\alpha$ is given by a continued fraction convergent to $\alpha$ ．We give basic properties including results related to periodic continued fractions．

## 1 Continued Fractions

## Definition 1

A continued fraction is an expression of the form

$$
q_{0}+\frac{1}{q_{1}+\frac{1}{q_{2}+\frac{1}{q_{3} \ddots .}}}
$$

with either a finite or infinite number of entries $q_{i}$ ．
We denote the above by

$$
q_{0}+\frac{1}{q_{1}+} \frac{1}{q_{2}+} \frac{1}{q_{3}+} \cdots \frac{1}{q_{i}} \text { or }\left[q_{0}, q_{1}, \cdots, q_{i}\right]
$$

which is called a partial quotient of the continued frac－ tion．

## Theorem 1

Let $q_{0}, q_{1}, \cdots$ be a finite（ $\mathrm{k}+1$ element）or infinite se－ quence of positive integers，with the exception that $q_{0}$ can be zero，and let $a_{n}$ and $b_{n}$ be given by

$$
\begin{gather*}
a_{0}=q_{0}, a_{1}=q_{0} q_{1}+1, a_{n+2}=a_{n+1} q_{n+2}+a_{n} \\
b_{0}=1, b_{1}=q_{1}, b_{n+2}=b_{n+1} q_{n+2}+b_{n} \quad(*) \tag{*}
\end{gather*}
$$

where $n \leq k$ in the finite case．If $\alpha$ is a real number greater than 1 ，then

$$
\begin{gather*}
{\left[q_{0}, \cdots, q_{n}, \alpha\right]=\frac{\alpha a_{n}+a_{n-1}}{\alpha b_{n}+b_{n-1}} \quad \text { provided } n>0}  \tag{1}\\
{\left[q_{0}, \cdots, q_{n}\right]=\frac{a_{n}}{b_{n}}} \tag{2}
\end{gather*}
$$

## Proof

The equatioin（1）holds when $n=1$ and the continued fraction has three entries．For $n>1$ we assume（1） holds for all continued fractions with $n+2$ entries，then

$$
\begin{aligned}
{\left[q_{0}, \cdots, q_{n+1}, \alpha\right] } & =\left[q_{0}, \cdots, q_{n}, q_{n+1}+\frac{1}{\alpha}\right] \\
& =\frac{\left(q_{n+1}+\frac{1}{\alpha}\right) a_{n}+a_{n-1}}{\left(q_{n+1}+\frac{1}{\alpha}\right) b_{n}+b_{n-1}} \\
& =\frac{\alpha a_{n+1}+a_{n}}{\alpha b_{n+1}+b_{n}} \quad \operatorname{by}(*),
\end{aligned}
$$

and（1）follows．
For（2）let $\alpha=q_{n+1}$ in（1）and use（＊）．

[^0]
## Lemma 1

Using the notation above we have，for $n \geq 0$ ，
（i）$\frac{a_{n}}{b_{n}}-\frac{a_{n+1}}{b_{n+1}}=\frac{(-1)^{n+1}}{b_{n} b_{n+1}}$ ，
（ii）$\left(a_{n}, b_{n}\right)=1$ ，
（iii）if $n>0$ then $b_{n+1}>b_{n}$ ，and so $b_{n} \geq n$ ，
（iv）$\frac{a_{0}}{b_{0}}<\frac{a_{2}}{b_{2}}<\cdots<\frac{a_{2 n}}{b_{2 n}}<\cdots<\frac{a_{2 n+1}}{b_{2 n+1}}<\cdots<\frac{a_{1}}{b_{1}}$ ，
（v）all infinite simple continued fractios converge．
Proof
（i）Using the equations $(*)$ we have $a_{0} b_{1}-a_{1} b_{0}=-1$ and $a_{n} b_{n+1}-a_{n+1} b_{n}=-\left(a_{n-1} b_{n}-a_{n} b_{n-1}\right)$ ，now use induction．
（ii）This follows immediately from（i）．
（iii）Use（ $*$ ）and induction，noting that $q_{n} \geq 1$ for $n>0$ ．
（iv）Substituting $q_{n+1}$ for $\alpha$ in Theorem 1 we see that， as $q_{n+1} \geq 1, \frac{a_{n+2}}{b_{n+2}}$ lies between $\frac{a_{n}}{b_{n}}$ and $\frac{a_{n+1}}{b_{n+1}}$ ． But $\frac{a_{0}}{b_{0}}<\frac{a_{1}}{b_{1}}$ ，so $\frac{a_{0}}{b_{0}}<\frac{a_{2}}{b_{2}}<\frac{a_{1}}{b_{1}}$ ．
The result follows by induction．
（v）By（i）and（iv），$\left\{\frac{a_{n}}{b_{n}}\right\}$ is a Cauchy sequence and so converges．

## Lemma 2

Using the above notation，if none of $\alpha, \alpha_{1}, \cdots, \alpha_{n-1}$ are integers，then

$$
\begin{equation*}
\alpha=\left[q_{0}, \cdots, q_{n-1}, \alpha_{n}\right] . \tag{3}
\end{equation*}
$$

## Proof

This follows by induction．

## Definition 2

Let $\alpha$ be a positive real number．Using the notation above and the equations（ $*$ ）in Theorem 1 ，the rational number $\frac{a_{n}}{b_{n}}$ is called the $n-t h$ convergent to $\alpha$ provided none of $\alpha, \alpha_{1}, \cdots, \alpha_{n}$ belong to $\mathbf{Z}$ ．

## Theorem 2

Suppose $\alpha$ is an irrational number．Using the notation above we have

$$
\begin{gather*}
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\alpha  \tag{4}\\
\left|\alpha-\frac{a_{n}}{b_{n}}\right|<\frac{1}{b_{n}+b_{n+1}}<\frac{1}{b_{n}^{2}} \tag{5}
\end{gather*}
$$

## Proof

By Lemma 1 （v） $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$ exists．By Theorem 1 （with $\alpha_{n+1}$ for $\alpha$ ）and Lemma 2，we see that $\alpha$ lies between $\frac{a_{n-1}}{b_{n-1}}$ and $\frac{a_{n}}{b_{n}}$ ．Both parts of the theorem follow by Lemma 1 （iii）and（iv）．

## Theorem 3

（i）If $\left[q_{0}, \cdots, q_{n}\right]=\left[q_{0}^{\prime}, \cdots, q_{m}^{\prime}\right], q_{n}>1$ ，and $q_{m}^{\prime}>1$ then $m=n$ and $q_{i}=q_{i}^{\prime}$ for all $i \leq n$ ．
（ii）If $\left[q_{0}, \cdots, q_{n}, \cdots\right]=\left[q_{0}^{\prime}, \cdots, q_{n}^{\prime}, \cdots\right]$ then $q_{n}=q_{n}^{\prime}$ for all $n$ ．

## Proof

（i）We have

$$
\begin{aligned}
{\left[q_{0}, \cdots, q_{n}\right] } & =q_{0}+\frac{1}{\left[q_{1}, \cdots, q_{n}\right]} \\
& =q_{0}^{\prime}+\frac{1}{\left[q_{1}^{\prime}, \cdots, q_{m}^{\prime}\right]}
\end{aligned}
$$

Now，as $q_{n}$ and $q_{m}^{\prime}$ are greater than 1，each fraction is proper，so $q_{0}=q_{0}^{\prime}$ ，and then $\left[q_{0}, \cdots, q_{n}\right]=\left[q_{0}^{\prime}, \cdots, q_{m}^{\prime}\right]$ ． Continue this process．Similarly we get（ii）．

## Theorem 4

The continued fraction representation of $\alpha$ is periodic if and only if $\alpha$ is a quadratic number，that is $\alpha$ satisfies a quadratic polynomial equation with rational coeffi－ cients．

## Proof

Suppose $\alpha=\left[q_{0}, \cdots, q_{k-1}, q_{k}^{*}, \cdots, q_{k+n-1}^{*}\right]$ then we have，by Lemma 2 and Theorem 1，

$$
\begin{aligned}
\alpha & =\left[q_{0}, \cdots, q_{k-1}, \alpha_{k}\right] \\
& =\frac{\alpha_{k} a_{k-1}+a_{k-2}}{\alpha_{k} b_{k-1}+b_{k-2}}
\end{aligned}
$$

and

$$
\begin{aligned}
{\left[q_{k}, \cdots, q_{k+n-1}, \alpha_{k}\right] } & =\alpha_{k} \\
& =\frac{\alpha_{k} a_{k+n-2}+a_{k+n-3}}{\alpha_{k} b_{k+n-2}+b_{k+n-3}}
\end{aligned}
$$

Combining these we obtain a quadratic equation for $\alpha$ with rational coefficients；that is，$\alpha$ is quadratic．
Conversely suppose $\alpha$ is positive and $\alpha=\alpha_{0}=$ $\frac{c_{0}+\sqrt{d}}{e_{0}}$ ，where $c_{0}, d$ ，and $e_{0}$ are integers，$d$ is not square，$e_{0} \neq 0$ ，and $e_{0} \mid d-c_{0}^{2}$ ．Using the contin－ ued fraction representation of $\alpha$ given by Lemma 2 we define $c_{i}$ and $e_{i}$ ，for $i=1,2, \cdots$ ，to satisfy

$$
\begin{equation*}
\alpha_{i}=\frac{c_{i}+\sqrt{d}}{e_{i}} \tag{6}
\end{equation*}
$$

by the equations

$$
\begin{equation*}
c_{i+1}=q_{i} e_{i}-c_{i}, \quad e_{i+1}=\frac{d-c_{i+1}^{2}}{e_{i}} \tag{7}
\end{equation*}
$$

It is a simple matter to check（by induction）that $c_{i}$ and $e_{i}$ are integers and that，$e_{i} \neq 0$ and $e_{i} \mid d-c_{i}^{2}$ ，using the equations

$$
\begin{aligned}
e_{i+1} & =\frac{d-c_{i+1}^{2}}{e_{i}} \\
& =\frac{d-c_{i}^{2}}{e_{i}}+2 q_{i} c_{i}-q_{i}^{2} e_{i}
\end{aligned}
$$

Now（6）follows by introduction using the equation $\alpha_{i}-$ $q_{i}=\frac{1}{\alpha_{i+1}}$ and（7）．
Further let $\alpha_{i}^{\prime}=\frac{c_{i}-\sqrt{d}}{e_{i}}$ ．By Theorem 1 and Lemma 1（iii）and 2 we have，taking conjugates and rewriting singling out $\alpha_{i}^{\prime}$ ，

$$
\begin{equation*}
\alpha_{i}^{\prime}=\frac{b_{i-2}}{b_{i-1}}\left(\frac{\alpha_{0}^{\prime}-\frac{a_{i-2}}{b_{i-2}}}{\alpha_{0}^{\prime}-\frac{a_{i-1}}{b_{i-1}}}\right) . \tag{8}
\end{equation*}
$$

By Theorem 2 the term in the parentheses tends to 1 as $i$ tends to infinity，and so there is an $n_{0}$ such that $\alpha_{n}^{\prime}<0$ if $n>n_{0}$ ．Hence $\alpha_{n}-\alpha_{n}^{\prime}=\frac{2 \sqrt{d}}{e_{n}}>0$ ，and thus $e_{n}>0$ ，if $n>n_{0}$ ．Also using（7）we have

$$
\begin{equation*}
e_{n} \leq e_{n} e_{n+1}=d-c_{n+1}^{2}<d \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{n+1}^{2}<c_{n+1}^{2}+e_{n} e_{n+1}=d \tag{10}
\end{equation*}
$$

Hence if $n>n_{0}$ there can only be finitely many distinct paris $\left\{c_{n}, e_{n}\right\}$ ，and so there is a $k>0$ such that，if $n>n_{0}, q_{n+k}=q_{n}$ ．As this implies $q_{n+t}=q_{n+k+t}$ where $t \geq 0$ ，the result follows．

## References

［1］G．H．Hardy \＆E．M．Wright ，An introduction to the theory of numbers，Fifth edition．，Oxford University Press， 1979.
［2］A．Ya．Khinchin，Continued Fractions，Chicago Uni－ versity Press， 1964.
［3］I．Niven ，H．S．Zuckerman \＆H．L．Montgomery ， An introduction to the theory of numbers，Fifth edition，Wiley \＆Sons， 1991.
［4］H．E．Rose，A Course in Number Theory，Second edition．，Oxford University Press， 1994.
［5］W．M．Schmidt，Diophantine approximation，Lec－ ture Notes in Math．，785，Springer－Verlag， 1980.
［6］W．M．Schmidt，Diophantine approximation and Diophantine Equations，Lecture Notes in Math．， 1467，Springer－Verlag， 1991.


[^0]:    ${ }^{1}$ 日大理工 $\cdot$ 院（前） •数学

