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Abstract

In this report, we discuss continued fractions. We show that a good rational approximations to a real number α
is given by a continued fraction convergent to α. We give basic properties including results related to periodic
continued fractions.

1 Continued Fractions
Definition 1
A continued fraction is an expression of the form

q0 +
1

q1 +
1

q2 +
1

q3
. . .

with either a finite or infinite number of entries qi.
We denote the above by

q0 +
1

q1+
1

q2+
1

q3+
· · · 1

qi
or [q0, q1, · · · , qi],

which is called a partial quotient of the continued frac-
tion.

Theorem 1
Let q0, q1, · · · be a finite (k+1 element) or infinite se-
quence of positive integers, with the exception that q0

can be zero, and let an and bn be given by

a0 = q0, a1 = q0q1 + 1, an+2 = an+1qn+2 + an ,

b0 = 1, b1 = q1, bn+2 = bn+1qn+2 + bn (∗)
where n ≤ k in the finite case. If α is a real number
greater than 1, then

[q0, · · · , qn, α] =
αan + an−1

αbn + bn−1
provided n＞ 0, (1)

[q0, · · · , qn] =
an

bn
. (2)

Proof
The equatioin (1) holds when n = 1 and the continued
fraction has three entries. For n ＞ 1 we assume (1)
holds for all continued fractions with n+2 entries, then

[q0, · · · , qn+1, α] = [q0, · · · , qn, qn+1 +
1
α

]

=
(qn+1 + 1

α )an + an−1

(qn+1 + 1
α )bn + bn−1

=
αan+1 + an

αbn+1 + bn
by(∗),

and (1) follows.
For (2) let α = qn+1 in (1) and use (∗). ¥
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Lemma 1
Using the notation above we have, for n ≥ 0,

(i)
an

bn
− an+1

bn+1
=

(−1)n+1

bnbn+1
,

(ii) (an, bn) = 1,
(iii) if n＞ 0 then bn+1＞ bn, and so bn ≥ n,

(iv)
a0

b0
＜

a2

b2
＜ · · ·＜a2n

b2n
＜ · · ·＜a2n+1

b2n+1
＜ · · ·＜a1

b1
,

(v) all infinite simple continued fractios converge.

Proof
(i) Using the equations (∗) we have a0b1 − a1b0 = −1

and anbn+1 − an+1bn = −(an−1bn − anbn−1), now
use induction.

(ii) This follows immediately from (i).
(iii) Use (∗) and induction, noting that qn ≥ 1 for n＞ 0.
(iv) Substituting qn+1 for α in Theorem 1 we see that,

as qn+1 ≥ 1,
an+2

bn+2
lies between

an

bn
and

an+1

bn+1
.

But
a0

b0
＜

a1

b1
, so

a0

b0
＜

a2

b2
＜

a1

b1
.

The result follows by induction.
(v) By (i) and (iv),{ an

bn
} is a Cauchy sequence and so

converges. ¥

Lemma 2
Using the above notation, if none of α, α1, · · · , αn−1 are
integers, then

α = [q0, · · · , qn−1, αn]. (3)

Proof
This follows by induction. ¥

Definition 2
Let α be a positive real number. Using the notation
above and the equations (∗) in Theorem 1 , the rational
number

an

bn
is called the n−th convergent to α provided

none of α, α1, · · · , αn belong to Z.

Theorem 2
Suppose α is an irrational number. Using the notation
above we have

lim
n→∞

an

bn
= α, (4)

| α − an

bn
|＜ 1

bn + bn+1
＜

1
b2
n

. (5)
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Proof
By Lemma 1 (v) lim

n→∞

an

bn
exists. By Theorem 1 (with

αn+1 for α) and Lemma 2, we see that α lies between
an−1

bn−1
and

an

bn
. Both parts of the theorem follow by

Lemma 1 (iii) and (iv). ¥

Theorem 3
(i) If [q0, · · · , qn] = [q′0, · · · , q′m],qn＞ 1, and q′m＞ 1 then
m = n and qi = q′i for all i ≤ n.
(ii) If [q0, · · · , qn, · · · ] = [q′0, · · · , q′n, · · · ] then qn = q′n
for all n.

Proof
(i) We have

[q0, · · · , qn] = q0 +
1

[q1, · · · , qn]

= q′0 +
1

[q′1, · · · , q′m]
.

Now, as qn and q′m are greater than 1, each fraction is
proper, so q0 = q′0, and then [q0, · · · , qn] = [q′0, · · · , q′m].
Continue this process. Similarly we get (ii). ¥

Theorem 4
The continued fraction representation of α is periodic if
and only if α is a quadratic number, that is α satisfies
a quadratic polynomial equation with rational coeffi-
cients.

Proof
Suppose α = [q0, · · · , qk−1, q

∗
k, · · · , q∗k+n−1] then we

have, by Lemma 2 and Theorem 1,

α = [q0, · · · , qk−1, αk]

=
αkak−1 + ak−2

αkbk−1 + bk−2

and

[qk, · · · , qk+n−1, αk] = αk

=
αkak+n−2 + ak+n−3

αkbk+n−2 + bk+n−3

Combining these we obtain a quadratic equation for α
with rational coefficients; that is, α is quadratic.
Conversely suppose α is positive and α = α0 =
c0 +

√
d

e0
, where c0, d, and e0 are integers, d is not

square, e0 6= 0, and e0 | d − c2
0. Using the contin-

ued fraction representation of α given by Lemma 2 we
define ci and ei, for i = 1, 2, · · · , to satisfy

αi =
ci +

√
d

ei
(6)

by the equations

ci+1 = qiei − ci, ei+1 =
d − c2

i+1

ei
. (7)

It is a simple matter to check (by induction) that ci and
ei are integers and that, ei 6= 0 and ei | d − c2

i , using
the equations

ei+1 =
d − c2

i+1

ei

=
d − c2

i

ei
+ 2qici − q2

i ei.

Now (6) follows by introduction using the equation αi−
qi =

1
αi+1

and (7).

Further let α′
i =

ci −
√

d

ei
. By Theorem 1 and Lemma

1(iii) and 2 we have, taking conjugates and rewriting
singling out α′

i,

α′
i =

bi−2

bi−1
(
α′

0 −
ai−2

bi−2

α′
0 −

ai−1

bi−1

) . (8)

By Theorem 2 the term in the parentheses tends to 1
as i tends to infinity, and so there is an n0 such that

α′
n＜ 0 if n＞ n0. Hence αn − α′

n =
2
√

d

en
＞ 0, and thus

en＞ 0, if n＞ n0. Also using (7) we have

en ≤ enen+1 = d − c2
n+1＜ d (9)

and
c2
n+1＜ c2

n+1 + enen+1 = d (10)

Hence if n＞ n0 there can only be finitely many distinct
paris { cn, en }, and so there is a k ＞ 0 such that, if
n＞n0,qn+k = qn. As this implies qn+t = qn+k+t where
t ≥ 0, the result follows. ¥
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