連分数とユークリッドのアルゴリズム Continued fractions and the Euclidean algorithm

宮臣有紀 (Miyatomi Yuki)¹

Abstract

In this report, we discuss continued fractions. We show that a good rational approximations to a real number α is given by a continued fraction convergent to α . We give basic properties including results related to periodic continued fractions.

1 **Continued Fractions**

Definition 1

A continued fraction is an expression of the form

$$q_0 + rac{1}{q_1 + rac{1}{q_2 + rac{1}{q_3 \cdot \cdot}}}$$

with either a finite or infinite number of entries q_i . We denote the above by

$$q_0 + \frac{1}{q_1 + q_2 + q_3 + \dots + \frac{1}{q_i}} or [q_0, q_1, \dots, q_i]$$

which is called a partial quotient of the continued fraction.

Theorem 1

Let q_0, q_1, \cdots be a finite (k+1 element) or infinite sequence of positive integers, with the exception that q_0 can be zero, and let a_n and b_n be given by

$$a_0 = q_0, a_1 = q_0q_1 + 1, a_{n+2} = a_{n+1}q_{n+2} + a_n ,$$

$$b_0 = 1, b_1 = q_1, b_{n+2} = b_{n+1}q_{n+2} + b_n \quad (*)$$

where $n \leq k$ in the finite case. If α is a real number greater than 1, then

$$[q_0, \cdots, q_n, \alpha] = \frac{\alpha a_n + a_{n-1}}{\alpha b_n + b_{n-1}} \quad provided \quad n \ge 0, \quad (1)$$

$$[q_0, \cdots, q_n] = \frac{a_n}{b_n} . \tag{2}$$

Proof

The equation (1) holds when n = 1 and the continued fraction has three entries. For n > 1 we assume (1) holds for all continued fractions with n+2 entries, then

$$[q_0, \cdots, q_{n+1}, \alpha] = [q_0, \cdots, q_n, q_{n+1} + \frac{1}{\alpha}]$$

= $\frac{(q_{n+1} + \frac{1}{\alpha})a_n + a_{n-1}}{(q_{n+1} + \frac{1}{\alpha})b_n + b_{n-1}}$
= $\frac{\alpha a_{n+1} + a_n}{\alpha b_{n+1} + b_n}$ by(*),

and (1) follows. For (2) let $\alpha = q_{n+1}$ in (1) and use (*).

¹日大理工・院(前)・数学

Lemma 1

Using the notation above we have, for $n \ge 0$, (1)n+1

(i)
$$\frac{a_n}{b_n} - \frac{a_{n+1}}{b_{n+1}} = \frac{(-1)^{-1}}{b_n b_{n+1}}$$
,
(ii) $(a_n, b_n) = 1$,
(iii) if $n > 0$ then $b_{n+1} > b_n$, and so $b_n \ge n$,
(iv) $\frac{a_0}{b_0} < \frac{a_2}{b_2} < \dots < \frac{a_{2n}}{b_{2n}} < \dots < \frac{a_{2n+1}}{b_{2n+1}} < \dots < \frac{a_1}{b_1}$,
(v) all infinite simple continued fractios converge

Proof

- (i) Using the equations (*) we have $a_0b_1 a_1b_0 = -1$ and $a_n b_{n+1} - a_{n+1} b_n = -(a_{n-1} b_n - a_n b_{n-1})$, now use induction.
- (ii) This follows immediately from (i).
- (iii) Use (*) and induction, noting that $q_n \ge 1$ for n > 0.
- (iv) Substituting q_{n+1} for α in Theorem 1 we see that, as $q_{n+1} \ge 1$, $\frac{a_{n+2}}{b_{n+2}}$ lies between $\frac{a_n}{b_n}$ and $\frac{a_{n+1}}{b_{n+1}}$. But $\frac{a_0}{b_0} < \frac{a_1}{b_1}$, so $\frac{a_0}{b_0} < \frac{a_2}{b_2} < \frac{a_1}{b_1}$. The result follows by induction. (v) By (i) and (iv), $\{\frac{a_n}{b_n}\}$ is a Cauchy sequence and so

converges.

Lemma 2

Using the above notation, if none of $\alpha, \alpha_1, \cdots, \alpha_{n-1}$ are integers, then

$$\alpha = [q_0, \cdots, q_{n-1}, \alpha_n]. \tag{3}$$

Proof

This follows by induction. \blacksquare

Definition 2

Let α be a positive real number. Using the notation above and the equations (*) in Theorem 1 , the rational number $\frac{a_n}{b_n}$ is called the n-th convergent to α provided none of $\alpha, \alpha_1, \cdots, \alpha_n$ belong to **Z**.

Theorem 2

Suppose α is an irrational number. Using the notation above we have

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \alpha, \tag{4}$$

$$|\alpha - \frac{a_n}{b_n}| < \frac{1}{b_n + b_{n+1}} < \frac{1}{b_n^2}.$$
 (5)

Proof

By Lemma 1 (v) $\lim_{n \to \infty} \frac{a_n}{b_n}$ exists. By Theorem 1 (with α_{n+1} for α) and Lemma 2, we see that α lies between $\frac{a_{n-1}}{b_{n-1}}$ and $\frac{a_n}{b_n}$. Both parts of the theorem follow by Lemma 1 (iii) Lemma 1 (iii) and (iv). \blacksquare

Theorem 3

(i) If $[q_0, \dots, q_n] = [q'_0, \dots, q'_m], q_n > 1$, and $q'_m > 1$ then m = n and $q_i = q'_i$ for all $i \leq n$. (ii) If $[q_0, \cdots, q_n, \cdots] = [q'_0, \cdots, q'_n, \cdots]$ then $q_n = q'_n$ for all n.

Proof

(i) We have

$$[q_0, \cdots, q_n] = q_0 + \frac{1}{[q_1, \cdots, q_n]} \\ = q'_0 + \frac{1}{[q'_1, \cdots, q'_m]}$$

Now, as q_n and q'_m are greater than 1, each fraction is proper, so $q_0 = q'_0$, and then $[q_0, \dots, q_n] = [q'_0, \dots, q'_m]$. Continue this process. Similarly we get (ii). \blacksquare

Theorem 4

The continued fraction representation of α is periodic if and only if α is a quadratic number, that is α satisfies a quadratic polynomial equation with rational coefficients.

Proof

Suppose $\alpha = [q_0, \cdots, q_{k-1}, q_k^*, \cdots, q_{k+n-1}^*]$ then we have, by Lemma 2 and Theorem 1,

$$\begin{array}{lll} \alpha & = & [q_0, \cdots, q_{k-1}, \alpha_k \\ & = & \frac{\alpha_k a_{k-1} + a_{k-2}}{\alpha_k b_{k-1} + b_{k-2}} \end{array}$$

and

$$[q_k, \cdots, q_{k+n-1}, \alpha_k] = \alpha_k = \frac{\alpha_k a_{k+n-2} + a_{k+n-3}}{\alpha_k b_{k+n-2} + b_{k+n-3}}$$

Combining these we obtain a quadratic equation for α with rational coefficients; that is, α is quadratic.

Conversely suppose α is positive and $\alpha = \alpha_0 =$ $\frac{c_0 + \sqrt{d}}{e_0}$, where c_0 , d, and e_0 are integers, d is not square, $e_0 \neq 0$, and $e_0 \mid d - c_0^2$. Using the continued fraction representation of α given by Lemma 2 we define c_i and e_i , for $i = 1, 2, \cdots$, to satisfy

$$\alpha_i = \frac{c_i + \sqrt{d}}{e_i} \tag{6}$$

by the equations

$$c_{i+1} = q_i e_i - c_i, \quad e_{i+1} = \frac{d - c_{i+1}^2}{e_i}.$$
 (7)

It is a simple matter to check (by induction) that c_i and e_i are integers and that, $e_i \neq 0$ and $e_i \mid d - c_i^2$, using the equations

$$e_{i+1} = \frac{d - c_{i+1}^2}{e_i} \\ = \frac{d - c_i^2}{e_i} + 2q_ic_i - q_i^2e_i.$$

Now (6) follows by introduction using the equation α_i – $q_i = \frac{1}{\alpha_{i+1}}$ and (7).

Further let $\alpha'_i = \frac{c_i - \sqrt{d}}{e_i}$. By Theorem 1 and Lemma 1(iii) and 2 we have, taking conjugates and rewriting singling out α'_i ,

$$\alpha_{i}' = \frac{b_{i-2}}{b_{i-1}} \left(\frac{\alpha_{0}' - \frac{a_{i-2}}{b_{i-2}}}{\alpha_{0}' - \frac{a_{i-1}}{b_{i-1}}} \right) \,. \tag{8}$$

By Theorem 2 the term in the parentheses tends to 1 as *i* tends to infinity, and so there is an n_0 such that $\alpha'_n < 0$ if $n > n_0$. Hence $\alpha_n - \alpha'_n = \frac{2\sqrt{d}}{e_n} > 0$, and thus $e_n > 0$, if $n > n_0$. Also using (7) we have

$$e_n \le e_n e_{n+1} = d - c_{n+1}^2 \le d \tag{9}$$

and

$$c_{n+1}^2 < c_{n+1}^2 + e_n e_{n+1} = d \tag{10}$$

Hence if $n > n_0$ there can only be finitely many distinct paris { c_n, e_n }, and so there is a k > 0 such that, if $n > n_0, q_{n+k} = q_n$. As this implies $q_{n+t} = q_{n+k+t}$ where $t \geq 0$, the result follows.

References

- [1] G. H. Hardy & E. M. Wright, An introduction to the theory of numbers, Fifth edition., Oxford University Press, 1979.
- [2] A. Ya. Khinchin, Continued Fractions, Chicago University Press, 1964.
- [3] I. Niven, H. S. Zuckerman & H. L. Montgomery, An introduction to the theory of numbers, Fifth edition, Wiley & Sons, 1991.
- [4] H. E. Rose, A Course in Number Theory, Second edition., Oxford University Press, 1994.
- [5] W. M. Schmidt, Diophantine approximation, Lecture Notes in Math., 785, Springer-Verlag, 1980.
- [6] W. M. Schmidt, Diophantine approximation and Diophantine Equations, Lecture Notes in Math., 1467, Springer-Verlag, 1991.