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Continued fractions and the Euclidean algorithm
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Abstract

In this report, we discuss continued fractions. We show that a good rational approximations to a real number «
is given by a continued fraction convergent to . We give basic properties including results related to periodic

continued fractions.

1 Continued Fractions
Definition 1
A continued fraction is an expression of the form
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with either a finite or infinite number of entries g;.
We denote the above by
n 1 1 1 1 [ ]
qo " — 0r(qo,q1," " , 4,
Qi+ g2+ g3+ g ’

which is called a partial quotient of the continued frac-
tion.

Theorem 1

Let qo,q1,- -+ be a finite (k+1 element) or infinite se-
quence of positive integers, with the exception that qq
can be zero, and let a,, and b,, be given by

ag = qo,a1 = qoq1 + 1,any2 = Gni1Gni2 + an

bo =1,b1 = q1,bnt2 = bnt1Gni2 +bn (%)
where n < k in the finite case. If « is a real number
greater than 1, then

Qlp + Ap—1

9o, s an, 0] = by by provided n'0 0, (1)
Qn
[qu"'MIn]:a . (2)
Proof

The equatioin (1) holds when n = 1 and the continued
fraction has three entries. For n O 1 we assume (1)
holds for all continued fractions with n + 2 entries, then
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(Qn+1 ':»é)bn + bnfl
Qln41 an,
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and (1) follows.
For (2) let & = gp+1 in (1) and use (x). W
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Lemma 1
Using the notation above we have, for n > 0,
() 32 - gt = (=)
n bn+1 bnbn+1 ’

(11) (an7 n) =1,
(iii) 1f n D 0 then b,+10 b, and so b, > n,

a2n a2n+1 ay
iv —D—D -0-——0gd---0d o.-.-0—,
(iv) by ban ban+1 by
(v) all infinite simple continued fractios converge.
Proof
i) Using the equations (x) we have agb; — a1bg = —1
(i) g q 0 0

and anbpi1 — apt1bn = —(an—1by — anbp_1), now
use induction.

(ii) This follows immediately from (i).

(iii) Use (*) and induction, noting that ¢, > 1 forn 0O 0.

(iv) Substituting ¢p4+1 for o in Theorem 1 we see that,

2 .. a Ap+1
as Qni1 > 1, *2 lies between — and —t.
n+62l a a bn bn+1
But —0 —, so —0 —0

0
bo 171’S bo by by
The result follows by induction.

(v) By (i) and (iv),{ ‘b‘l

converges. ll

} is a Cauchy sequence and so

Lemma 2
Using the above notation, if none of a, g, - - - , 1 are
integers, then

CV:[QO»"' 7qn717an]~ (3)

Proof
This follows by induction. W

Definition 2

Let o be a positive real number. Using the notation

above and the equations () in Theorem 1, the rational
a

number —= is called the n—th convergent to a provided

n

none of o, aq,- -, a, belong to Z.

Theorem 2
Suppose « is an irrational number. Using the notation

above we have
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lim — = q, (4)
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Proof a
By Lemma 1 (v) lim b—n exists. By Theorem 1 (with

n—oo
a1 for @) and Lemma 2, we see that « lies between
n—1 and n
bn—l bn
Lemma 1 (iii) and (iv). B

Both parts of the theorem follow by

Theorem 3

(1) If [QO7' o 7qn] = [q67 o 7Q1/77,])q7l[| 17 and q;-n,lj 1 then
m =n and ¢; = ¢} for all i < n.
for all n.
Proof
(i) We have
1
(90, yqn] = g+ —
[qh"]: 7qu]
= q/ + -\
0 [q,17"' ’q;’n]

Now, as g, and ¢, are greater than 1, each fraction is

proper, so go = ¢y, and then [go, -+, gn] = [¢0, -+, ap,]-
Continue this process. Similarly we get (ii). W

Theorem 4

The continued fraction representation of « is periodic if
and only if « is a quadratic number, that is « satisfies
a quadratic polynomial equation with rational coeffi-
cients.

Proof

Suppose o = [QO7 oy qk—1, QZ7 e
have, by Lemma 2 and Theorem 1,

s Qi yn_1) then we

o = [CIOWkaA,ak]
_ Qpag—1 + ag—2
arbr—1 + br—2
and
[ka"'an+n—1aak] = O

OkOk4+n—2 T Qk+n—3

0Ok 4n—2 + brrn—3s

Combining these we obtain a quadratic equation for «
with rational coefficients; that is, « is quadratic.
Conversely suppose « is positive and @ = «qp =

co+Vd . .

i, where ¢, d, and ey are integers, d is not
€o

square, eg # 0, and eg | d — ¢§. Using the contin-

ued fraction representation of o given by Lemma 2 we

define ¢; and e;, for i = 1,2,--- , to satisfy

=GtV (©)

e
by the equations

d— c?
ﬁ_ (7)

Ci+1 = Qi€ — Gy,
€i

€ir1 =
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It is a simple matter to check (by induction) that ¢; and
e; are integers and that, e; # 0 and e; | d — ¢, using
the equations

2
_ d-cip
i1 = T
7

d—c?

= Lt 2gici — gl
e;

Now (6) follows by introduction using the equation «; —
1
and (7).
Q1
ci —Vd

q; =

Further let of = . By Theorem 1 and Lemma

i
1(iil) and 2 we have, taking conjugates and rewriting
singling out o,

ol — ;-2
bi—a, 0 b
) = bzf(,iaij) : (8)
1—1 0~ T
i—1

By Theorem 2 the term in the parentheses tends to 1
as i tends to infinity, and so there is an ng such that

.2V

n

a0 0if n 0O ng. Hence oy, — O 0, and thus

en
e,0 0, if n O ng. Also using (7) we have

en < epepi1 =d— ciHD d (9)

and
20 i +enens1 =d (10)

Hence if n 0 ng there can only be finitely many distinct
paris { ¢,, e, }, and so there is a k O 0 such that, if
n 0 ng,gntk = gn. As this implies gn4+ = ¢ntr+t Where
t > 0, the result follows.
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