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Hermite’s identity and the transcendence of 7
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Abstract

In 1873, Ch.Hermite proved that the number e is transcendental.

Herimite’s proof is based on Hermite’s identity.

In this report, we give a sketch of a proof to show the transcendence of 7 using Hermite’s identity.

1 Hermite’s identity

Hermite’s method gives the following statement,
which is equivalent to the transcendence of e : for any
m > 1 the numbers 1,e,e2,...,e™ are linearly inde-
pendent over Q. One uses the technique described in
which the construction of the simultaneos rational ap-
proximations to powers of e is based on the so-called
Hermite's identity.

LEMMA 1 (Hermite’s identity). Let f(z) be a poly-
nomial of degree v with real coefficients. Set

F(x) = f(z) + f'(2) + -+ [ (2). (1)

Then we have

e’ /037 f(t)e tdt = F(0)e”

PROOF Integrating by parts, we obtain the relation

/: ft)e tdt = f(0) — f(x)e ™ + /0@’ f(tHetdt. (3)

If we repeat this process v + 1 times, we arrive at the

equality
/ " fetdt = F(0)
0

from which (2) follows.

— F(z). (2)

— F(z)e ",

The equality (2) is called ”"Hermite’s identity”.

2 Transcendental of 7

The mathematicians of antiquity were in search of
way of computing the area of a circle. It was this that
led to the famous problem of squaring the circle and to
various rational approximations to w. The irrationality
of m was proven by J.H.Lambert in 1766.
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The problem of squaring the circle is the following
question : Starting with the radius of a circle and using
only ruler and compass, is it possible to construct the
side of a square that has the same area as the circle? It
was not until two thousand years later that this ques-
tion was answered in the negative when F.Lindemann
in 1882 proved that 7 is transcendental.

THEOREM 1 (F.Lindemann). The number 7 is

transcendental.

PROOF The proof that follows is relied on the equa-
tion €™ 4+ 1 = 0 and Lemmma 1. We suppose that
the theorem is false, i.e., that 7 is an algebraic number.
Then v = 7i is also algebraic. Let v = deg~, and let

¥ = v1,...,7 be the conjugates of v over Q. Since
e’ +1 =0, we have
H(l +e7) = 0.
i=1
Expanding this product, we obtain
14
H 1 + 6% Z Z exp e+ + 51/)/1/) =0.
=1 e1=0 g,=0

(4)
The exponents inside the multiple sum in (4) include
some which are nonzero, e.g., when €1 = 1 and €5 =

- =¢, = 0, and also some which are zero, e.g., when
€ = --- =¢, = 0. Suppose that there are precisely
m nonzero exponents and a = 2 — m which are zero,
a > 1. Then, if we let aq,...,a,, denote the nonzero
exponents, we can rewrite (4) as follows :

at+et 4+ +e*m =0, a>=1. (5)

We now show that the numbers «q, ..., a,, are the
set of roots of a polynomial i(x) € Z[z] of degree m.
To see this, we observe that the polynomial

1
=1 [[@-(Gm+ - +en),

e1=0 £,=0

[
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considered as a polynomial in vq,...,v, with coeffi-
cients in Z[x], is symmetric in v1,...,7,. Hence, p(z)
is in Q[z]. The roots of the degree 2” polynomial (z)
are aq,...,Q;, and 0 with multiplicity a. Then, the
degree m polynomial 2~ %p(z) € Q[x] has precisely the
number aq, ..., q,, as its roots. If we let r € N be the
least common denominator of the coefficients of this
polynomial, then the polynomial

(@) = - p(@) = ba™ + -+ + by + by € Zal,

bm>07 60#0,

also has precisely aq, ..., q,, as its roots.
In Hermite’s identity (2) we successively set = =
ai,...,qmy. By (5), we obtain :

—aF(0) =Y Flon) = S [T pweta @)
k=1 0

k=1

In (6) we set

f(x) = 0 _1 ol z"—lxn—l " ()
— (n _1 1)!65,T+1)n71xn71(x — al)n . (I _ am)n,

(7)

where n is a sufficiently large natural number. We shall
show that with this choice of f(z) the equality (6) leads
to a contradiction.

We obtain :
fO0y=0, 1=0,1,...,n=2, f7D0)=pm""1p0.
Put A such that
(m+1)n—1
FO)= Y fO0) =bp" " +nd,  (8)

then we have A € Z.
Since ay is a root of f(z) of multiplicity of n, we get
also :

fP(ar) =0,

The I-th derivative of 2™~ 14" (z) has integer coefficients
which are all divisible by n!. Hence, for I > n the
coefficients of f()(x) are integers divisible by b7"~1n.
Then, from (9), we have

1=0,1,....n—=1; k=1,....,m. (9)

(m+1)n—1
F(ay) = Z FO(ag) = nbm1d(ay), 10)
l=n
k=1,...,m, ®(z)€Z[z].
The numbers By = b,a, k=1,...,m, are algebraic

integers which make up the complete set of roots of a
polynomial of degree m in Z[z] with leading coefficient
1. Furthermore, there exists a polynomial H(z) € Z|x],
such that

b%n_lq)(ak) = H(ﬁk)
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Hence,

zm:bfnm_ltb(ak) = iH(Bk). (11)
k=1

k=1

Put B = ZH(ﬁk), therefore we have B € Z. From

k=1
(8), (10) and (11) we find that
aP(0)+ Y Flax) = aby "' +n(aA+ B). (12)
k=1

Now let n be any natural number satisfying the con-
ditions
(n,bobm) =1, n>a. (13)
Then the right side of (12) is an integer which is not
divisible by n, and so is nonzero. Hence,

> 1. (14)

aF(O) + iF(Ozk)
k=1

We now find an upper bound for the right side of (6).
Suppose that all of the points aq, ..., a,, are contained
in the circle |z| < R. We denote

pm - C
Qg}éI m¥ ()| =C,

where C' does not depend on n. Then
Rnflcn
< —.

Hence, there exists an ng € N such that for any n > ng
which satisfies (13) we have the inequalities

ée% /Oak f(z)e %dz| < Z /Oak |f(x)] ’e(arz)

m
k=1
Qg
/ dx
0

Rn—leR m
<1.

dx

<mToid 2

k=1
r (RO)"
(n—1)!

me

N

(15)

The inequalities (14) and (15), along with (6), lead
to the contradiction 1 < 1. The theorem is proved.
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