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Abstract

In 1873, Ch.Hermite proved that the number e is transcendental. Herimite’s proof is based on Hermite’s identity.
In this report, we give a sketch of a proof to show the transcendence of π using Hermite’s identity.

1 Hermite’s identity

Hermite’s method gives the following statement,
which is equivalent to the transcendence of e : for any
m > 1 the numbers 1, e, e2, . . . , em are linearly inde-
pendent over Q. One uses the technique described in
which the construction of the simultaneos rational ap-
proximations to powers of e is based on the so-called
Hermite′s identity.

LEMMA 1 (Hermite’s identity). Let f(x) be a poly-
nomial of degree ν with real coefficients. Set

F (x) = f(x) + f ′(x) + · · ·+ f (ν)(x). (1)

Then we have

ex
∫ x

0

f(t)e−tdt = F (0)ex − F (x). (2)

PROOF Integrating by parts, we obtain the relation∫ x

0

f(t)e−tdt = f(0)− f(x)e−x +

∫ x

0

f ′(t)e−tdt. (3)

If we repeat this process ν + 1 times, we arrive at the
equality ∫ x

0

f(t)e−tdt = F (0)− F (x)e−x,

from which (2) follows.

The equality (2) is called ”Hermite’s identity”.

2 Transcendental of π

The mathematicians of antiquity were in search of
way of computing the area of a circle. It was this that
led to the famous problem of squaring the circle and to
various rational approximations to π. The irrationality
of π was proven by J.H.Lambert in 1766.
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The problem of squaring the circle is the following
question : Starting with the radius of a circle and using
only ruler and compass, is it possible to construct the
side of a square that has the same area as the circle? It
was not until two thousand years later that this ques-
tion was answered in the negative when F.Lindemann
in 1882 proved that π is transcendental.

THEOREM 1 (F.Lindemann). The number π is
transcendental.

PROOF The proof that follows is relied on the equa-
tion eπi + 1 = 0 and Lemmma 1. We suppose that
the theorem is false, i.e., that π is an algebraic number.
Then γ = πi is also algebraic. Let ν = deg γ, and let
γ = γ1, . . . , γν be the conjugates of γ over Q. Since
eγ + 1 = 0, we have

ν∏
i=1

(1 + eγi) = 0.

Expanding this product, we obtain

ν∏
i=1

(1 + eγi) =

1∑
ε1=0

· · ·
1∑

εν=0

exp(ε1γ1 + · · ·+ ενγν) = 0.

(4)
The exponents inside the multiple sum in (4) include
some which are nonzero, e.g., when ε1 = 1 and ε2 =
· · · = εν = 0, and also some which are zero, e.g., when
ε1 = · · · = εν = 0. Suppose that there are precisely
m nonzero exponents and a = 2ν −m which are zero,
a > 1. Then, if we let α1, . . . , αm denote the nonzero
exponents, we can rewrite (4) as follows :

a+ eα1 + · · ·+ eαm = 0, a > 1. (5)

We now show that the numbers α1, . . . , αm are the
set of roots of a polynomial ψ(x) ∈ Z[x] of degree m.
To see this, we observe that the polynomial

φ(x) =
1∏

ε1=0

· · ·
1∏

εν=0

(x− (ε1γ1 + · · ·+ ενγν)),
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considered as a polynomial in γ1, . . . , γν with coeffi-
cients in Z[x], is symmetric in γ1, . . . , γν . Hence, φ(x)
is in Q[x]. The roots of the degree 2ν polynomial φ(x)
are α1, . . . , αm and 0 with multiplicity a. Then, the
degree m polynomial x−aφ(x) ∈ Q[x] has precisely the
number α1, . . . , αm as its roots. If we let r ∈ N be the
least common denominator of the coefficients of this
polynomial, then the polynomial

ψ(x) =
r

xa
φ(x) = bmx

m + · · ·+ b1x+ b0 ∈ Z[x],

bm > 0, b0 ̸= 0,

also has precisely α1, . . . , αm as its roots.
In Hermite’s identity (2) we successively set x =

α1, . . . , αm. By (5), we obtain :

−aF (0)−
m∑

k=1

F (αk) =
m∑

k=1

eαk

∫ αk

0

f(t)e−tdt. (6)

In (6) we set

f(x) =
1

(n− 1)!
bmn−1
m xn−1ψn(x)

=
1

(n− 1)!
b(m+1)n−1
m xn−1(x− α1)

n · · · (x− αm)n,

(7)

where n is a sufficiently large natural number. We shall
show that with this choice of f(x) the equality (6) leads
to a contradiction.
We obtain :

f (l)(0) = 0, l = 0, 1, . . . , n−2, f (n−1)(0) = bmn−1
m bn0 .

Put A such that

F (0) =

(m+1)n−1∑
l=n−1

f (l)(0) = bmn−1
m bn0 + nA, (8)

then we have A ∈ Z.
Since αk is a root of f(x) of multiplicity of n, we get

also :

f (l)(αk) = 0, l = 0, 1, . . . , n− 1; k = 1, . . . ,m. (9)

The l-th derivative of xn−1ψn(x) has integer coefficients
which are all divisible by n!. Hence, for l > n the
coefficients of f (l)(x) are integers divisible by bmn−1

m n.
Then, from (9), we have

F (αk) =

(m+1)n−1∑
l=n

f (l)(αk) = nbmn−1
m Φ(αk),

k = 1, . . . ,m, Φ(z) ∈ Z[z].

(10)

The numbers βk = bmαk, k = 1, . . . ,m, are algebraic
integers which make up the complete set of roots of a
polynomial of degree m in Z[x] with leading coefficient
1. Furthermore, there exists a polynomialH(x) ∈ Z[x],
such that

bmn−1
m Φ(αk) = H(βk).

Hence,
m∑

k=1

bmn−1
m Φ(αk) =

m∑
k=1

H(βk). (11)

Put B =
m∑

k=1

H(βk), therefore we have B ∈ Z. From

(8), (10) and (11) we find that

aF (0) +

m∑
k=1

F (αk) = a bn0 b
mn−1
m + n(aA+B). (12)

Now let n be any natural number satisfying the con-
ditions

(n, b0bm) = 1, n > a. (13)

Then the right side of (12) is an integer which is not
divisible by n, and so is nonzero. Hence,∣∣∣∣∣aF (0) +

m∑
k=1

F (αk)

∣∣∣∣∣ > 1. (14)

We now find an upper bound for the right side of (6).
Suppose that all of the points α1, . . . , αm are contained
in the circle |x| 6 R. We denote

max
|x|6R

|bmmψ(x)| = C,

where C does not depend on n. Then

max
|x|6R

|f(x)| 6 Rn−1Cn

(n− 1)!
.

Hence, there exists an n0 ∈ N such that for any n > n0
which satisfies (13) we have the inequalities∣∣∣∣∣

m∑
k=1

eαk

∫ αk

0

f(x)e−xdx

∣∣∣∣∣ 6
m∑

k=1

∣∣∣∣∫ αk

0

|f(x)|
∣∣∣e(αk−x)

∣∣∣ dx∣∣∣∣
6 Rn−1eR

(n− 1)!
Cn

m∑
k=1

∣∣∣∣∫ αk

0

dx

∣∣∣∣
6 meR

(RC)n

(n− 1)!
< 1.

(15)

The inequalities (14) and (15), along with (6), lead
to the contradiction 1 < 1. The theorem is proved.
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