B-10

# HP曲面張力膜構造の風応答性状に関する研究

(その1)風圧力特性の把握

Study on Wind Response on HP-Shaped Membrane Roof

(Part1) Characteristics of Wind Pressure Coefficient on HP-Shaped

○綛谷友昭<sup>5</sup>, 岡田章<sup>1</sup>, 神田亮<sup>2</sup>, 宮里直也<sup>1</sup>, 吉野誠一<sup>4</sup>, 松本良太<sup>5</sup>, 斎藤公男<sup>3</sup>

\*Tomoaki Kaseya<sup>5</sup>, Akira Okada<sup>1</sup>, Kanda Makoto<sup>2</sup>, Naoya Miyasato<sup>1</sup>, Seiichi Yoshino<sup>6</sup>, Ryota Matsumoto<sup>5</sup>, Masao Saitoh<sup>3</sup>

Abstract: Wind load is the most dominant load for light-weight structures such as membrane roofs. Particularly since the HP-shaped membrane roof has a complicated shape, the basic date for the design wind load on the HP-shaped membrane roof has not been reported. In this paper, the authors focus on the wind-load on HP-shaped membrane roofs with sag-span ratio of 0.05,0.10 and 0.15, and report wind tunnel tests for it.

## 1.はじめに

HP曲面張力膜構造(以下,「HP張力膜」と称す)は,複雑 な曲面を有する構造物であり, Fig. 1に示すような実施 例が存在する. 膜構造は, 一般に軽量であるがゆえに風 荷重が支配荷重となるため,耐風設計が最も重要な設 計課題とされている.また,HP形状などの曲面を有する 構造物ではレイノルズ数の変化によって剥離点の位置 が異なり,作用する風圧分布性状が異なると考えられ, 風洞実験において実スケール現象を再現することは困 難である.一方,膜構造は膜面全体で変形を伴いながら 応力を伝達する軸力抵抗が特徴であり,この点を考慮 たレイノルズ数の変化が膜応力に与える影響について 考察した研究は,著者らの知る限り報告されていない.

以上の諸点より,本研究では,張力膜構造において基 本的な曲面形状であり,等張力を目標形状として設定 できるHP張力膜を対象として, レイノルズ数の変化が 膜応力に及ぼす影響を検討することを目的とする.(そ の1)では表面に粗度をつけレイノルズ数不一致の緩和 を行った模型<sup>1)</sup>を使用した風洞実験を実施し,その結果 を報告する. (その2)では(その1)より得られた風圧力 特性を用いて静的および動的応答解析を行い, レイノ ルズ数の変化が膜応力に及ぼす影響を検討する.

### 2.本論文に使用する記号

本論で扱う記号の定義をFig.2に示す.風力係数,上 面風圧係数,下面風圧係数をそれぞれCp, Cpi, Cpoと表す. 風圧係数は測定した風圧力を軒高さで得た平均速度圧 で除した値とし,その符号は,模型面を押す方向を正と して,引く方向を負とする.

## 3. 風洞実験

### 3-1. 実験概要

風洞実験装置内観,模型写真および試験体概要を Fig. 3に,実験条件をTab. 1に示す.本論で使用する形状 は,矩形平面を有するサグ・スパン比0.05,0.10,0.15の 3種類のHP張力膜とし,四隅を柱で支持するモデルであ る. 模型はアクリル製の剛模型で, 模型の表面には, 外 径1mm, 内径0.6mmの銅製パイプを用いて, 上下面に25点





Figure2. Difinition of Coefficient (Positive and Negative)



Figure3. Outline of Wind Tunnnel Test

| Table1. Condition of Wind Tunnel Test |                       |
|---------------------------------------|-----------------------|
| 気流                                    | 境界層乱流                 |
| 想定気流                                  | 地表面粗度区分Ⅲ              |
| 風向 $\theta$                           | 0度,45度,90度            |
| 表面粗度                                  | なし(Smooth), あり(Rough) |
| サンプリング周波数・時間                          | 500Hz·約30sec          |
| サグ・スパン比(s/L)                          | 0.05, 0.10, 0.15      |
| 模型サイズ (模型スケール)                        | 100mm×100mm (1/100)   |
| 気流スケール,時間スケール                         | 6/27,9/200            |

1:日大理工·教員·建築 2:日大生産工·教員·建築工 3:日大名誉教授 4:日大理工·院(後)·建築 5:日大理工·院(前)·建築



Figure 6. Wind Pressure Coefficient Obtained from Wind Tunnel Test (s/L = 0.10)

ずつ測定孔を設けた.膜面の厚さは,約5mmである.な お,模型の縮尺率は1/100と設定した.表面粗度は既往 の研究<sup>1)</sup>を参考にして, Fig. 3に示すようなポリエチレ ン製メッシュを模型表面に貼りつけた.風向は0度から 90度の範囲で45度間隔で測定した.なお,0度はHP曲面 のアーチ方向,90度は吊り方向と設定した.実験気流 は、建築物荷重指針2)における地表面粗度区分Ⅲ相当の 境界層乱流を用いた. Fig. 4に模型設置位置での測定気 流を示す.基準速度圧は地面から膜面中央までの高さ を軒高35mmとして算出した.本実験における模型の軒 先高さ(Z=35mm)での風速はおよそ6m/s, 乱れ強さはお よそ0.3である.基準風速をVo=34m/sとすると,軒先付近 での平均風速はV<sub>b</sub>=27m/sとなり,本実験での風速の縮尺 率は6/27であり、その場合の時間の縮尺率は9/200とな る. 計測は32秒間(フルスケール換算で約12分)と設定 し,上下面の全点で同時計測を行った.

## 3-2. 実験結果および考察

計測は各モデル,各風向で計5回ずつ行い,アンサン ブル平均処理を行った.Fig.5に表面粗度あり(以下, 「Rough」),表面粗度なし(以下,「Smooth」)のそれぞれの モデルの風向0度,45度,90度における平均風力係数,変 動風力係数,最大・最少のピーク風力係数を示す.ここ で,変動風力係数は,風圧力の標準偏差を平均速度圧で除した値である.また,風向,表面粗度の変化は各サグ・スパン比に関わらず概ね一致したため,本論ではサグ・スパン比0.10のみの結果を報告する.

平均風力係数は風向によってその分布が大きく変化 し,90度方向で正圧・負圧ともに大きな値を示した.ま た,表面粗度の有無による変化は見られなかった.変動 風力係数は風向0度では風上側先端で,風向45度,90度 では屋根中央部で大きな値を示し,Roughの方が変動が 小さいことが把握された.また,ピーク風力係数に着目 すると,Smoothと比べ,Roughの風下側の負のピーク風 力係数が小さい値を示すことから,Roughの方が,より 風上側で剝離が起こったと考えられる.

本実験では実スケール現象を正確に再現していると は言い難いが,見かけ上のレイノルズ数が大きくなっ たと考えられる.また,レイノルズ数の変化によって静 的応答と動的応答の差異が推察でき,適切な応答の把 握と評価が必要であると考えられる.

#### 4. まとめと今後の検討

HP張力膜の風圧分布特性を把握し、レイノルズ数の 変化が風圧力特性に及ぼす影響を検討した.今後の検 討,及び参考文献は(その2)に示す.