B-2

黒鉛を摩擦材とした滑り基礎構造に関する研究 その3 摩擦係数確認実験および一方向振動台実験

Study on Sliding Base Structure Using Graphite Friction Materials Part3 Verification Test of Friction Coefficient and 1-D Shaking Table Test

○渡邊 恭平¹, 柳川雅嘉², 波田雅也², 竹内健一², 北嶋圭二³, 中西三和³, 安達洋³ Kyohei Watanabe *1, Masayoshi Yanagawa², Masaya Hada², Kenichi Takeuchi², Keiji Kitajima³, Mitsukazu Nakanishi³, Hiromi Adachi³

Abstract: In this paper, it described the verification test of friction coefficient and one-dimension shaking table test on the sliding base structure by means of basic sliding characteristics and the effect of seismic input reduction.

1. はじめに

本研究は,中低層建物を対象と した滑り基礎構造の実現の可能 性について検討したものである. 滑り基礎構造とは, Fig.1 の概念

図に示すように、コンクリート製

Fig.1 Sliding Base Structure (Image)

の人工地盤と基礎板の間に安価で摩擦係数の小さな黒鉛 粉末(摩擦係数 0.1~0.2 程度)を挿入することによって, 地 震時に地盤加速度が一定以上の大きさになると、人工地 盤と基礎板の間が滑り、建物への入力加速度を低減させ る仕組みである.

本報では、実験的に摩擦係数を確認し、一方向振動台 実験を実施することにより、滑り基礎構造の基本的な滑 り性状および入力低減効果について確認する.

2. 試験体および摩擦係数確認実験

2.1 試験体 試験体は Fig.2 に示すように, 幅 1500×1500mm, 高さ 200mm のコンクリート製の人工地盤 と基礎板である. 試験体の作製方法は、まず人工地盤を 打設しコンクリート硬化後、滑り面となる人工地盤上面 を研磨して約30g/m²の少量の黒鉛粉末を塗布する.その 上に 300mm 角, 厚さ 50mm の PC 板を敷き詰め, その側 面部に型枠を設置し PC 板上に基礎板コンクリートを打 設することで摩擦面と基礎コンクリートが付着しないよ うにした. なお基礎板の重量は約10kN である.

2.2 摩擦係数確認実験

試験体の摩擦係数を確認するために実施 a) 実験方法 した実験(Photo.1)は、人工地盤を反力床に固定し、既往 の実験 1)で用いた加振テーブルと基礎板をロードセルを 介して緊結し、基礎板を直接押し引きして実施した.加 黒鉛粉オ 基礎板 カサイクルは,振幅を PC板 0.2 200 0. ±100mm 一定の3 サイク 200 0 ルとし、加力速度は 1.0, -0.2 1500 2.0cm/sec とした. また, 人工地盤 1500 滑り性状の面圧依存性

を確認するため、基礎板上に20kNの錘(面圧3倍)を載せ た加力も実施した.人工地盤と基礎板の相対変位はレー ザー変位計を用いて測定した.

b)実験結果 Fig.3に摩擦係数と基礎板変位(人工地盤と 基礎板の相対変位)の関係を示す.摩擦係数は、試験体の 滑り抵抗力を基礎板重量で除して算出した. Fig.3(a), (b) より、滑り始めの静止摩擦係数は若干高いが、滑ってい る最中の摩擦係数は、滑り速度に拘わらず 0.15~0.2 程度 であることが確認できる. また, Fig.3(c)より, 面圧を 3 倍に変化させても同様な結果となったことから、滑り性 状は面圧にも依存しないことが確認できた.

3. 一方向振動台実験

3.1 実験方法 振動台実験は、二方向振動台を使用 し、加振テーブルに人工地盤を固定して、慣性力にて基 礎板を滑らせた(Photo.2, Fig.4). 加振波は定常波では, 漸増 sin 波 3 波(1.33Hz,2Hz,4Hz)とし、最大加速度が 500cm/sec²となるように変位振幅を調整した.非定常波 は、観測地震波 3 波(El Centro-NS, Kobe-NS, Taft-EW)とし、 振動台のストローク(±200mm)の制約から0.75Hzでハイパ ス処理し、50cm/secで規準化した波を入力倍率1.0倍とし た. Table1 に加振条件を, Table2 に入力加振波の特性値 を示す.また、入力倍率の違いによる滑り性状を把握す

人工地盤(振動台)と 基礎板の加速度、絶 対変位および人工地 盤と基礎板の相対変 位である.加速度は

対変位は、振動台を跨ぐようにフレームを組み、振動台 上2mの高さの位置に取付けた画像センサにより測定した. 人工地盤と基礎板の相対変位(滑り変位)は、基礎板上に 取付けたレーザー変位計にて測定した.

3.2 実験結果

a) 定常波加振 Table3 に定常波加振実験で計測された 地盤と基礎板の最大加速度を, Fig.5, Fig.6 に 2Hz 加振時 の加速度波形と摩擦係数-基礎板相対変位の関係を示す. なお,摩擦係数は,基礎板加速度を重力加速度で除して 算出した. Table3, Fig.5 より, 基礎板の加速度は 150~ 200cm/sec² で頭打ちとなっていることが確認できる. ま たFig.6より、摩擦係数は0.15~0.2程度であり、振動台実 験においても摩擦係数確認実験と同様の摩擦係数で滑っ ていることが確認できる. Table4 に地盤および基礎板の 絶対変位と相対変位の最大値を, Fig.7 に 2Hz 加振時の絶 対変位波形を, Fig.8 に地盤と基礎における相対変位波形 を示す. Fig.7 より, 基礎板の絶対変位の振幅は地盤より 小さいが、若干の片流れ現象が発生し、加振終了時には 残留変位が生じることが確認 Table2 Input Wave Characteristics なお、入力倍率が大きくなると、それに伴い地盤の相対 加速度 速度 された. このことは Fig.8 から 定常 も確認することができる.

b) 非定常波加振 Table5 に 非定常加振実験で計測された 地盤と基礎の最大加速度を,

(a) 立面図 Fig.4 System of Shaking Table Test

変位 8 656 51 (EL) 383 42 79 447 50 非定常 41 (KO) 568 671 (TA) Table3 Max. Acceleration [cm/sec²] 2Hz 4H; 1.33Hz 491 476 498 196 198 201 Table4 Absolute & Relative Disp. [mm] .33Hz 2Hz 4Hz 人工地盤 71 32 9 基礎板 38 相対変位 基礎板 78 VVV Fig.5 Time History of Acceleration 900 600 [mm] -300 -600 Fig.6 Friction Coefficient -Relative Displacement Relation 工地盤

率 1.0 倍および 1.5 倍)の加速度波形を, Fig.10 に入力倍率 1.0 倍および 1.5 倍の El Centro 加振時の摩擦係数と相対変 位の関係を示す. Table5, Fig.9 より, 基礎板の加速度は, 波の種類および入力倍率に拘わらず, 150~200cm/sec² で 頭打ちとなっていること、Fig.10より、摩擦係数は0.15~ 0.2 程度であることが確認できる. これらのことから、非 定常波加振においても定常波加振と同様に、基礎板の加 速度は 150~200cm/sec²で頭打ちとなり、波の特性や大き さに影響されないことが確認された. Table6 に地盤およ び基礎板の絶対変位と相対変位の最大値を, Fig.11 に El Centro-1.0倍と1.5倍加振時の絶対変位波形を示す. Fig.11 より、非定常波加振時の基礎板変位は、定常波加振時と は異なり、地盤から少しずれた状態で地盤変位と類似し た挙動をしている. これは Fig.9(a)および Fig.11 からも明 らかなように,非定常波加振時には常に大きな地盤加速 度が生じているわけではないので、地盤加速度が 150cm/sec² 程度以上のときに基礎板が滑り(相対変位が生 じ)、それ以外のときは地盤と同じ挙動をするためである. 変位(滑り量)も大きくなることが確認できる(Fig.11).

4. まとめ

以上,本報により得られた知見を以下にまとめる. ・摩擦係数確認実験より、黒鉛粉末を摩擦材とした滑り 基礎の摩擦係数は0.15~0.2程度であり、摩擦係数は滑り 速度や面圧に依存しない.

・一方向加振実験より,基礎板の加速度は 150~ 200cm/sec² で頭打ちとなり、入力波の特性(定常・非定常、 波の種類および入力倍率)の影響は受けない.

Fig.8 Relative Disp. (2Hz)