超弾性柔要素部材を用いた次世代制震構造システムに関する研究 (その18 損傷制御設計スタディー概要)

New Generation Energy Dissipation Structural System using Super-Elastic Member

Part18. Outline of Damage Control Study Design

○竹内健一², 黒澤諒¹, 波田雅也², 北嶋圭二³, 中西三和³, 安達洋³

Kenichi Takeuchi², Ryo Kurosawa¹, Masaya Hada², Keiji Kitajima³, Mitsukazu Nakanishi³, Hiromi Adachi³

This paper shows the outline of damage control study design using column's top and bottom pin joints.

1. はじめに

本研究は、連層耐震壁脚部をピン接合とし、壁脚部 に軸剛性と弾性限変形が制御可能な折返し方式の超弾 性部材を設置することで,弾性復元特性を維持できる 連層耐震壁を組み込んだ架構の制震構造システム(以 下,次世代制震構造システムと称す)1)に関する研究で ある.本システムを用いれば、連層耐震壁により各層 の変形分布を一様に制御した上で、ダンパーの耐力と 剛性による減衰制御と,超弾性部材による主架構の剛 性制御を各々独立して設定することができ、応答制御 の観点から合理的な制震構造の計画が可能となる.

本報では、柱頭柱脚をピン接合とした本システムに よる無損傷構造建物(Fig.1)の損傷制御設計スタディー 概要について述べる.

2. 設計スタディー

10階建

15階建

5階建

<u>10階建</u> 15階建

5階建

10階到

15階建

5階建

15階建

名称

構造形式

(a) 建物概要 で用いた,現行の基準法を満足する 5 階(21.0m)・10 階(41.0m)・15 階(61.0m)建てのセンターコア方式の鉄 骨造事務所ビルを基本建物とした. Table1 に建物概要 物は、全ての柱の柱頭柱脚をピン接合として、水平力 を負担させないようにし、柱梁断面は、長期応力を負 担できる程度の断面に設定した. このピン接合の柱梁 フレームに、壁脚部に超弾性部材を組んだ連層耐震壁 を設置した建物が、次世代非制震Kwである.この次世 代非制震Kwに境界梁ダンパーを組込んだ建物が,今回 設計を行う次世代制震 K_+ Kd である. Fig.4 に次世代制 震構造建物形状を示す.なお,次世代制震K_w+K_dの全 ての水平力は, 連層耐震壁架構が負担する. 連層耐震 壁はカップリングウォール形式とし、連層耐震壁が周 辺架構により弾性回転挙動を拘束されないように、構 面外に設けた. 10 階および 15 階建ては, 一部のスパ

鋼材量は、純ラーメン構造と比較して、1.06kN/m²から 0.56kN/m²に削減された.

(b)設計方針 建物の目標性能は,告示で規定される 極稀地震動の入力に対し、主架構が弾性性能を維持す ることとし、いずれの建物も、目標の最大応答層間変 形角を 1/100rad とした. Fig.5 に設計フローを示す.本 設計は、Sa-Sd スペクトル上で、目標周期、必要減衰を 算出し,超弾性部材の設定,等価1自由度系の必要ダ ンパー量の算出を行う.その後,多層建物での壁厚, 制震部材を設定し,静的荷重増分解析,時刻歴応答解 析を行う.そして,最終的に静的解析結果,応答解析 結果を等価1自由度系に縮約^{1),2)}し,縮約1自由度系で の応答評価を行う.

(c) 次世代制震構造建物の設計

i)目標周期及び必要減衰 10 階建を例に, Fig.6 に 設計目標となる、目標周期と必要減衰の関係を Sa-Sd スペクトル上に示す. 図中の数字の周期は, ①目標変 形時に 5%スペクトルと交わる周期(強度指向型), ② 目標変形時に 20%スペクトルと交わる周期(これまで の次世代制震構造建物の設計目標), ③目標変形時に Sa=200Galとなる周期(一次設計時の必要耐力)である. 本システムは、超弾性部材による剛性制御によって周 期を任意に設定することができるため、本設計におい ては、③目標変形時に Sa=200Gal となる周期を、次世 代非制震Kwの目標周期に設定した.なお,次世代制震 K_w+K_dの耐力は,次世代非制震K_wの耐力にダンパー耐 力分が加わった耐力となる. Table4 に目標周期, 必要 減衰定数を示す. 必要減衰は, Sa-Sd スペクトルから 5%応答スペクトルと目標周期の交点より代表変位 Sd を求め、式(1)より最大応答変位 δ_{max} が目標変位とな るように応答低減係数 Fh を求め,入力地震動特性を反 映させて定義した式(2)1)より必要な等価粘性減衰定数 h_{eq} を求めた.

 $1 + \frac{5h_0}{2}$...(2) Fh = - $\delta_{\max} = Sd \times Fh \cdots (1)$ 1 + 5h δ_{max} :最大応答変位, Fh:応答低減係数, Sd : 1 次の代表変位(h=5%), h:減衰定数 (h₀+h_{ea}), h₀:構造減衰(0.05), h_{eq}:等価粘性減衰定数 ii)超弾性部材 目標周期から連層耐震壁架構剛性 を式(3)により求め, 壁脚部に設置する超弾性部材1本 当たりの軸剛性は、超弾性部材取付け位置を壁幅位置 として式(4)により求めた. Table5 に超弾性部材(2 回 折返し方式3重構造の中鋼管断面)を示す.

$$k_w' = \frac{1}{n} \left(\frac{1}{T^2} \cdot 4\pi^2 \cdot M_{eq} \right) \cdots (3) \qquad k_c' = \left(\frac{H_{eq}}{S} \right)^2 k_w' \cdots (4)$$

 k_w

iii)必要ダンパー量 等価1自由度系における必要 ダンパー量を式(5)により求めた.なお、ダンパー塑性 率はμ=10と仮定した.

0 -	h_{eq}	$-\times O \dots (5)$
\mathcal{Q}_d –	2(1)	$\overline{1}$
	$0.8 \times - \times 1 $	

 Q_d : ダンパーせん断力, Q_w : 連層耐震壁せん断力, μ_d:ダンパー塑性率

iv)連層耐震壁 連層耐震壁は,解析を行う前に作用 せん断力を推定し,壁厚を設定する.連層耐震壁の作 用せん断力は、1次モード($_1Q_w$)と高次モード($_rQ_w$)のせ ん断力を各々個別に算定 ¹⁾し、両者を足し合わせて算 定する.1次モードにおいては、1質点上にて求めたべ ースシアを用いて、各層の層せん断力をAi分布に基づ く外力分布によって算出した. 高次モードにおいては, 高次モードの次数は2次モードのみを考慮することと し,2次モードの絶対加速度は地動加速度に比例する¹⁾ と仮定して,式(6)に示した各層の2次モードの慣性力 を、上階から累積(式(7))して $_{2}Q_{w}$ を算定する. Table6 に連層耐震壁の壁厚を示す. 壁厚は, せん断応力度 τ が短期許容せん断応力度以下となるよう設定した.

 $_{2}P_{wi} = m_{i} \times_{2} \beta_{2} u_{i} \times \ddot{y}_{0} \cdots$ (6) $_{2}Q_{wi} = \sum_{i=2}^{2} P_{wj} \cdots$ (7) $m_{i=i}$ i層の質量 $_{2\beta}: 2$ 次モードの刺激係数、 $_{2u_{i}}: i$ 層の2次固有ベクトル、 $\ddot{y}_{0}: 入力加速度$

境界梁ダンパーは,各層に同部材を均 v)制震部材 等に設置する.境界梁ダンパー1本あたりの必要せん 断耐力は,式(8)より求めた. Table7 に境界梁ダンパー 諸元を示す.境界梁ダンパーは低降伏点鋼 LY225 を用 い、必要ダンパー量および仮定した塑性率が確保され るように、曲げ変形成分を考慮して、可撓長さおよび ダンパー断面を設定した.

 $q_{d} = \frac{H_{eq}}{\alpha S} \times Q_{d} \times \frac{1}{n} \dots (8)$ q_d:境界梁ダンパー1本あたりのせん断耐力, αS: 壁芯間隔, n_d: ダンパー総本数 n_d 3. まとめ

以上,損傷制御設計スタディー概要について述べた. 【参考文献】その19にまとめて示す.

総本数

40

80

断面積

[cm²]

$k' = \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{\pi^2}{M} \frac{1}{2} \frac{1}{$	(1)	н	B tw	+f	$\left[cm^{2} \right]$	[cm ⁴]	[kN/木]	[kN#m/木]	[cm	1
$\kappa_w = \frac{1}{n} \left(\frac{T^2}{T^2} + 4\pi + M_{eq} \right)^{(1)} \left(5 - \kappa_c \right)^{(1)} = \frac{1}{N} \left(\frac{1}{N} + \frac{1}{N} \right)^{(1)} \left(\frac{1}{N} + \frac{1}{N} \right)^{(1)} \left(\frac{1}{N} + \frac{1}{N} \right)^{(1)} $	(4)	700 3	00 9	19	60	153965	702	990	237	_
m(1) (5)	10階建	700 2	00 6	28	39	139871	456	899	322	
	15階建	700 2	00 6	28	39	139871	456	899	322	
k_w : 壁 1 t_{y}) 当たりの連層耐震壁架構剛性, M_{eq} : 等価質量)	Table5 Super-elastic member								
n:カップリングウォールのセット数, T:目標周期, H _{eq} :等価高さ	î	E 17比 2曲	10KkZ#	1 = 1	7比 7-13		++ 65	超弾性音	部材	断
S:壁幅(超弾性部材取付け位置)		ジ泊廷	10泊建	10	泊炷		竹貝	中鋼管	ŧ 🗌	[
k.': 超弾性部材1本当たりの軸剛性	次世代非制震Kw 目標周期[sec]	1.73	2.35	2.	87	5階建	BCR295	□-250x25	i0xt12	
						10階到	BCP325	□-400x40	00xt 9	
	必要減衰定数h(h_+h_eq)[%]	54	34	2	25	15階列	BCP325	□-450×45	0xt19	;