B-52

損傷スペクトルを用いた RC 造建物の損傷評価 (その2)阪神・淡路大震災の実被害状況と損傷スペクトルとの対応 Simplified Damage Evaluation Method of RC Buildings by Damage Spectrum (Part 2) Comparison between Actual Damage Level and Damage Spectrum in Great Hansin Earthquake

○渡部俊宗¹, 仲俊亮², 田嶋和樹³, 白井伸明³

*Toshimune Watanabe¹, Shunsuke Naka², Kazuki Tajima³, Nobuaki Shirai³

Abstract: In Part 1, it was confirmed that the actual damage level of the Great East Japan Earthquake and the damage spectra calculated with the newly-identified parameters showed a good correspondence. In Part 2, the damage spectrum calculated with the identified parameters and acceleration records was compared with the actual damage level of the Great Hanshin-Awaji Earthquake. As a result, satisfactory agreement was obtained, and thus it seems that the damage spectrum presented is reasonable. In addition, further research is needs to investigate effect of pulse-type excitations.

1. はじめに

前報(その1)で、東日本大震災の実被害状況と概ね対応することが確認できた.本報では、前報で設定されたパラメータを用いた損傷スペクトルが、過去の大地 震時における実被害状況との対応性を検証する.なお、 対象は阪神・淡路大震災とする.

2. 阪神・淡路大震災の被害状況

兵庫県南部地震は直下型地震で、規模はマグニチュ ード 7.2 であり、震源地が近いことと震源深さが浅い ことから甚大な被害をもたらした地震である.地震発 生当時は強震観測網が普及していなかった.そこで、 当時地震観測を行っていた大阪ガス葺合供給所および JR 鷹取駅で観測された地震波を用いて損傷スペクト ルを作成し、地震観測点周辺の建物被害状況と損傷ス ペクトルの結果の比較を行う.なお、ここでは建物単 体ではなく、建物群としての被害状況と損傷スペクト ルとの対応について確認する.

Fig.1 に大阪ガス葺合周辺の RC 建物全数調査の建築 年代別被害率分布^[1]を示す.旧耐震建物における軽微 以上の被害率は 54.7%,新耐震においては 38.0%,中破 以上はそれぞれ 14.8%, 5.8%となっており,旧耐震建 物での被害が目立っている.Fig.2 に階数別に着目した 中破以上の被害率^[1]を示す.これより高層になるほど 被害の割合が上昇する傾向が見られた.なお,この傾 向は建物年代によらないことが指摘されている^[1].

次に JR 鷹取駅周辺建物の実被害状況について確認 する. Table1 に各行政庁による応急危険度判定調査^[2] による大阪ガス葺合と JR 鷹取駅周辺の地域における 中破以上の被害数および被害率を示す. 鷹取周辺の被 害調査では建物年代別に被害率を区分した資料がない

No Damage
Slight
Minor
Moderate
Severe
Collapse
Unknown
Fig.1 Damage Ratio by Age of Buildings around Fukiai

Table1 Number of Buildings over Moderate

District	The number of the damage	The number of the investigations	Damage rate(%)	
Higashinada-ku	124	1743	7.1	
Nada-ku	93	1398	6.7	
Chuo-ku	60	1244	4.8	Fukiai
Hyogo-ku	82	775	10.5	
Nagata-ku	48	422	11.3	Takatori
Suma-ku	38	366	10.4	1 andtorr

1:日大理工・院(前)・建築 2:日大理工・学部・建築 3:日大理工・教員・建築

ため、新耐震および旧耐震建物を統合した Table1 の被 害率を用いて検討を行う. 鷹取周辺の地域である長田 区と須磨区の被害率は11.3%と10.4%であり,葺合周辺 である中央区の被害率よりも大きいことが分かる. 被 害率は被害数を調査数で除して算出する. 階数別の建 物棟数率が把握できれば,建物棟数率に応じた階数別 の被害率が予測できる. そこで、中央区を対象とした 階数別の建物棟数率^[1]を Fig.3 に示す. これより、3~5 階建の建物の割合が多くなっていることから、鷹取周 辺においても同様に 3~5 階建の建物が多いと考え、こ の階数における被害率が上昇する可能性が考えられる. これより、以上に示した葺合および鷹取周辺の実被害 状況が損傷スペクトルと対応するか確認する.

3. 損傷スペクトルとの比較

Fig.4 に葺合で観測された地震波を用いて作成した 損傷スペクトルを示す.設計用加速度応答スペクトル で新耐震,旧耐震建物を区別し,建物の破壊モードを $\mu_{mon}=6$ はせん断破壊型, $\mu_{mon}=12$ は曲げ崩壊型とし, μ_{mon} の区別により表わす.また,新耐震建物に対しては前 報で算出された余剰強度係数の平均値 $\Omega=4.5$ を用いて 解析を行った.旧耐震建物($\mu_{mon}=6$)ではNS方向におい て,ほとんどの周期帯で大破($0.4 \leq DI_2 < 1.0$)を表す損傷 指標値となった.また,新耐震建物においては Fig.2 で示した階数別被害の傾向を概ね捉えていると考えら れる.

Fig.5 に鷹取で観測された地震波を用いて作成した 損傷スペクトルを示す.Fig.4の葺合と比較すると,全 体的に損傷指標値 DI が大きくなる傾向が見られた.特 に,旧耐震建物($\mu_{mon}=6$)では EW 方向において,倒壊(1.0 \leq DI₂)を表す周期帯が見られた.また,Fig.3 より 3~5 階建の割合が多いということから,階高を 3.9m とし, 略算法(T=0.015H, H:建物高さ)を用いて周期を算出す ると,T=0.2~0.3(s)となる.そこで,この周期帯に着 目すると,葺合周辺では旧耐震建物($\mu_{mon}=6$)で損傷が大 きくなっているが,新耐震建物ではほぼ無被害となっ ている.一方,鷹取周辺では新・旧耐震建物とも損傷 指標値が突出する周期帯となっていることが分かる.

これより, Table1 に示したように, 鷹取周辺の被害率 が大きくなった理由は, 損傷スペクトルからおおよそ 説明できる可能性がある.しかし, 新耐震建物におい て, せん断破壊型と曲げ崩壊型で損傷指標値に差があ まり見られなかった.これは DI 算出時の変形とエネル ギーによる損傷の割合の関係に起因すると考えられる. 兵庫県南部地震は衝撃的なパルス波であり, エネルギ ーによる損傷に比べ, 変形による損傷の割合が増加し

Fig.5 Damage Spectrum around Takatori

たため,エネルギーに大きく影響する μ_{mon}を変化させ ても違いが見られなかったと考えられる.そのため, このようなパルス型の地震動に対しては,パラメータ 値の変更や別途設定が必要だと考えられる.

また、本報では μ_{mon} や余剰強度係数の値については 実被害に基づき概略値を算出した. 今後はこれらの値 についてプッシュオーバー解析を用いた検討を行う.

4. まとめ

本報では、大阪ガス葺合供給所および JR 鷹取駅で観 測された地震波を用いて、前報(その 1)で設定されたパ ラメータ値を用いた損傷スペクトルの妥当性に関する 検証を行った.その結果、実被害と概ね対応したため、 損傷スペクトルによる損傷評価に妥当性があると考え られる.なお、パルス波を含む地震動については、今 後パラメータ値の検討が必要だと考えられる.

- 5. 参考文献
- [1] 日本建築学会:阪神・淡路大震災調査報告,鉄筋 コンクリート建築物,建築編1,1997.7
- [2] 建築省建築研究所:平成7年兵庫県南部地震被害 調査最終報告書, 1996.3

【謝辞】本研究の一部は科学研究費補助金(基盤研究(C) 代表者:白井伸明)の助成を受けて行われたものである.