エネルギーの釣合に基づく液状化地盤の損傷評価に関する研究 その2 エネルギー〜過剰間隙水圧関係の検討

Study on Evaluation of damage in Liquefaction Based on the Energy Balance in Liquefiable Sandy Ground Part 2 Considerations on relationship between Energy and Excessive Pore Water Pressures

○道明裕毅¹,安達俊夫²,山田雅一²,朝枝亮太³,藤森圭祐⁴ *YukiDomyo¹, ToshioAdachi², MasaichiYamada², RyoutaAsaeda³, KeisukeFujimori⁴

Abstract: The purpose of this study is to establish for evaluation of damage in sand deposits following liquefaction based on energy balance. This report is experimental investigation of relationships between accumulate plastic strain energy and excessive pore water pressures by cylindrical torsional test.

1. はじめに

前報その1¹⁾では規準化累積塑性ひずみエネルギーと 最大せん断ひずみの関係について報告した.

本報告では、過剰間隙水圧の上昇に対して合理的な 評価を行うため、規準化累積塑性ひずみエネルギーと 過剰間隙水圧比の関係について報告する.

2. 試験概要

せん断試験は中空ねじりせん断試験装置を用いた. 供試体は高さ10cm,直径10cmの中空円筒供試体である.表1に試料の物理的性質と試験条件および液状化 強度 R₁₅を示す.ここで液状化強度 R₁₅は,繰返し回数 15回で過剰間隙水圧比が95%に達する時のせん断応力 比である.各条件において,せん断応力比を変えて, 複数の試験を行った.

試料	土粒子の 密度	最大間隙比	最小間隙比	相対密度	有効拘束圧	液状化強度
	$\rho_{\rm s}({\rm g/m^3})$	e _{max}	e _{min}	Dr(%)	$\sigma'_{c}(kN/m^{2})$	R ₁₅
霞ヶ浦砂−a	2.755	0.944	0.605	60	49	0.242
				80		0.344
霞ヶ浦砂−b	2.759	0.856	0.505	40	98	0.170
				60		0.210
				80		0.258
豊浦砂	2.631	0.977	0.608	40	49	0.163
				60		0.201
				80		0.259

Table1. Test condition

3. 試験結果

図1に本試験で得られた規準化累積塑性ひずみエネ ルギー Wp/σ'_0 ~過剰間隙水圧比 $\Delta u/\sigma'_0$ 関係の試験結 果を示す.規準化累積塑性ひずみエネルギーは,累積 塑性ひずみエネルギー W_p を有効拘束圧 σ'_c で除して規 準化している.

同図(a)に本試験結果の一例(豊浦砂 Dr80%)を示す. この図より,過剰間隙水圧比は規準化累積塑性ひずみ エネルギーの増加に伴って増大することがわかる.本 報では、各サイクルでの過剰間隙水圧比の最大値を取 るデータ(図 1(a)中の○印)を用いて検討をした.

図 1(b)~(i)に各供試体の試験結果を示す. これらの 図より,過剰間隙水圧比が 1.0 に達した後も,規準化 累積塑性ひずみエネルギーは増加し続ける. また,砂 の種類で規準化累積塑性ひずみエネルギー~過剰間隙 水圧比関係には差異が認められる. Dr=40%と 60%の場 合では規準化累積塑性ひずみエネルギーと過剰間隙水 圧比の関係に大きな差異は見られないが, Dr=80%の場 合と比較すると過剰間隙水圧比が上昇しやすくなって いることが見て取れる.

4. 規準化累積塑性ひずみエネルギー〜過剰間隙水圧比 関係

本報では、下村の提案式²⁾を基に規準化累積塑性ひ ずみエネルギー Wp/σ'_0 〜過剰間隙水圧比 $\Delta u/\sigma'_0$ の関 係について検討する. $Wp/\sigma'_0 \sim \Delta u/\sigma'_0$ 関係を検討す るにあたり、過剰間隙水圧比が初めて 95%に達するま でのデータを用いた.下村は相対密度をパラメータと して提案式を提案しているが、本報では砂の種類の影 響を考慮するために、相対密度ではなく液状化強度 R_{15} と最小間隙比 e_{min} から $Wp/\sigma'_0 \sim \Delta u/\sigma'_0$ 関係を提案す る.

本試験結果から,規準化累積塑性ひずみエネルギー ~過剰間隙水圧比関係を次式で表す. (1)

$$\frac{\Delta u}{\sigma'_0} = \alpha (\frac{Wp}{\sigma'_0})^{0.5}$$

ここに、 α は e_{min} と R_{15} との関数であり、図 2 で示 した α と e_{min}/R_{15} 関係から次式より求められる.

$$\alpha = \beta(e_{\min} / R_{15}) \tag{2}$$

Fig 1. Relationships between Wp/ σ'_0 and $\Delta u/ \sigma'_0$

Fig 2. Relationships between α and e_{min} / R_{15}

ここに、 β は係数、 e_{min} は最小間隙比、 R_{15} は液状化 強度である.本試験結果から係数 β は3.74が得られた. ここで $\Delta u/\sigma'_{0}$ が1.0以上となった場合は1.0とする. この(1) 式から得られた提案式を図 1(b)~(i)に実線 で示す.これらの図より,本実験データと(1)式は概ね 良い対応を示している.

5. まとめ

本研究では、室内要素試験により累積塑性ひずみエ ネルギーと過剰間隙水圧の関係について検討した.そ の結果.以下の知見が得られた.

- 過剰間隙水圧比は、1.0 に達するまで規準化累積塑 性ひずみエネルギーのべき関数で表される.
- 規準化累積塑性ひずみエネルギー~過剰間隙水圧 比関係は砂の液状化強度と最小間隙比によって推 定できる可能性を示した.

【参考文献】

- 藤森他:エネルギーの釣合いに基づく液状化地盤の損傷評価に関する研究,エネルギー~最大せん断ひずみ関係の検討,第56回日本大学理工学部学術 講演会,投稿中,2012
- 2) 下村:エネルギーの釣合に基づく地盤の液状化に伴う沈下予測に関する研究,日本大学博士論文,2011