K2-44

窒素希釈が低温酸化反応を伴う HCCI の自発点火遅れに及ぼす影響 Influence of Nitrogen Dilution on Ignition Delay of HCCI with Low Temperature Reaction

○反町侑貴¹, 山内太郎¹, 佐藤考², 田辺光昭³ *Yuki Sorimachi¹, Taro Yamauchi¹, Ko Sato², Mitsuaki Tanabe³

Abstract: Effect of nitrogen dilution on first induction time (τ_1) and second induction time (τ_2) of HCCI were investigated by using a super rapid compression machine (SRCM). Three kinds of nitrogen dilution rate (i.e. 0%, 20%, 50%) were employed. As a result, τ_1 was increased by nitrogen dilution. It is explained by decrease in reaction rate due to decreased fuel concentration. τ_2 was increased by nitrogen dilution. It is thought that τ_2 was increased by decrease in temperature raise by low temperature reaction in addition to the above effect. And the increase in τ_2 was longer than that of τ_1 .

1. 緒言

地球環境問題解決のため内燃機関には燃料消費率と 有害排気物質の同時低減が求められている.この要求 を満たす内燃機関として HCCI(予混合圧縮自発点火) エンジンが提案されている. HCCI エンジンの高負荷 条件では主の燃焼時の急激な圧力上昇によりノッキン グが発生し,エンジン破壊を引き起こす.急激な圧力 上昇を低減させる手法の一つとして EGR(排気再循環) があり,実機を用いた EGR による燃焼制御の研究が行 われている^[1].また.二段の圧力上昇を伴う HCCI は低 温酸化反応での発熱により熱炎の自発点火に影響を及 ぼす.本研究では,EGR ガス中の主成分である窒素に 着目し,超急速圧縮装置(SRCM)^[2]を用いて燃料と空気 の予混合気を窒素で希釈した際の圧縮終了から低温酸 化反応開始までの誘導期間及び低温酸化反応開始から 主の燃焼開始までの誘導期間を調査した.

2. 実験方法及び定義

実験装置は超急速圧縮装置を用いた.供試燃料はガ ソリンを模擬したサロゲートガソリン(2,2,4-Trimethylp -entane: 30mol%, Toluen: 29.4mol%, *n*-Heptane: 15.7mol%, 1-Pentene: 14.5mol%, Methylcyclohexane: 6.4mol%)を用 いた.また,空気を模擬した酸素 21mol%及び窒素 79 mol%の混合ガスを用いた.この空気を窒素で希釈する 際の窒素希釈率 D_{N2} は以下の式で定義した.

$$D_{\rm N_2} = \frac{n_{\rm N_2}}{n_{\rm Air} + n_{\rm N_2}} \times 100[\%]$$
(1)

ここで, *n*Airは空気量[mol], *n*_{N2} は添加する窒素量[mol] である.

実験条件を Table 1 に示す.

Table 1. Experimental condition

Fuel	Surrogate gasoline (RON:94.5)
Equivalence ratio ϕ [-]	1.0
Nitrogen dilution rate D_{N^2} [%]	0, 20, 50
Compression ratio ε [-]	9.8-11.3
P_0 [MPa]	0.10
$T_0[\mathbf{K}]$	308-504
P_1 [MPa]	1.96-2.47
<i>T</i> ₁ [K]	717-1148
Polytropic index [-]	1.28-1.34

ここで, 添字0は圧縮開始前, 添字1は圧縮終了時を 表す.

自発点火遅れ(各誘導期間)と低温酸化反応による温度上昇*ΔT*_{LTR}の定義を Fig. 1 に示す.

Figure 1. Definition of the ignition delay and $\Delta T_{\rm LTR}$

自発点火遅れ時間 τ は圧縮終了から主の燃焼開始 (20% 発熱相当)までの時間とした^[3].ここで,圧縮終 了から低温酸化反応開始 (20% 発熱相当)までの誘導 期間を τ_1 ,低温酸化反応開始から主の燃焼開始まで誘 導期間を τ_2 とした.低温酸化反応による温度上昇 ΔT_{LTR} は,低温酸化反応終了時の温度と開始時の温度の差と した.低温酸化反応終了時と開始時の温度は時間に対 する圧力の傾きが 0 または最小値での圧力の値から定

1:日大理工・学部・航宇 2:日大理工・院・航宇 3:日大理工・教員・航宇

容過程で算出した.

3. 実験結果及び考察

Figure 2, 3 に τ_1 , τ_2 それぞれの 1000/ T_1 との関係を示す. $D_{N_2} = 50\%$ において 1000/ T_1 が 1.23 [1/K] 付近以上で プロットがない.これは,低温条件のため自発点火に 至らなかったためである.

Figure 2. Relation between first induction time τ_1 and reciprocal of T_1

Figure 3. Relation between second induction time τ_2 and reciprocal of T_1

 τ_1, τ_2 は共に窒素希釈することにより増加した.また,窒 素希釈率の増加による τ_2 の増加は τ_1 の増加と比較して 大きくなった. τ_1 が窒素希釈により増加した理由は希釈 により燃料濃度が減少し,反応速度が減少したことと 考えた.反応速度は以下の式で表される.

$$\frac{d[C]}{dt} = A[C]^n \exp(-E/RT)$$
(2)

ここで, [*C*]は燃料と酸素の濃度, A は実験定数, n は 全反応次数, *E* は活性化エネルギー, *R* は一般ガス定 数, *T* は絶対温度[K]である.

窒素希釈することで濃度項[C]は(1-D_{N2}/100) [C]とな

るため(2)式より反応速度が減少し、反応時間は増加する.よって、窒素希釈することで τ_1 が長くなると考えられる.次に窒素希釈によって τ_2 が増加した理由として、 τ_1 同様に希釈による反応速度の減少と、低温酸化反応による温度上昇の違いが要因であると考えた.これを確認するために 1000/ T_1 と低温酸化反応による温度上昇 ΔT_{LTR} の関係を Fig. 4 に示す.

Figure 4. Relation between ΔT_{LTR} and reciprocal of T_1

Figure4 より、窒素希釈率の増加に伴い ΔT_{LTR} が減少し ていることがわかる.この要因は、窒素希釈率が増加 することによる反応物質の減少が考えられる.また Fig. 3、4 より、 ΔT_{LTR} が低ければ、 τ_2 が長くなることが分か る.このことから窒素希釈による τ_2 の増加が τ_1 の増加に 比べて大きくなったのは、 τ_1 は燃料濃度の低下による反 応速度の減少に起因するのに対し、 τ_2 は燃料濃度の減 少による反応速度の減少と反応物質の減少による ΔT_{LTR} の減少の二つの要因に起因するためだと考えられる.

4.結論

- ・窒素希釈によりτ₁は増加した.これは燃料濃度の低下 による反応速度の減少によるものと考えられる.
- ・窒素希釈により τ_2 は増加した.これは燃料濃度の低下 による反応速度の減少と反応物質の減少による ΔT_{LTR} の減少によるものだと考えられる.またこの時の増加分は τ_1 に対して大きくなった.

5. 参考文献

- [1]永井健一郎・飯田訓正:日本機械学会論文集 No.09-0545, pp.691-698 (2010)
- [2]Y.Wanatabe et al., SAE : Paper 2008-01-2403 (2008)
- [3] S. Tanaka et al., Combustion and Flame 132, pp.219-239 (2003)