任意の周期的開口をもつ導体遮蔽板による電磁波の散乱 Scattering of Electromagnetic Waves by a Conducting Screen with Arbitrary Apertures.

○甲藤慶一郎¹, 尾崎亮介², 山﨑恆樹² *Keiichiro Katto¹, Ryosuke Ozaki i², Tsuneki Yamasaki²

Abstract: Recently, it is very important problems that the radio disturbance occurs from electronic devices. As the devices with the signal of high frequency component has increased, it is necessary to reduce the radio disturbance by the mobile phone. In this paper, we have shown a formulation to analyze the scattering problem by conducting screen with arbitrary apertures.

1. はじめに

近年,電子機器からの電波障害が注目されている. これは,電波や高周波の電気信号を扱う電子機器が増 えたことから,どこの家庭にもあるような普通の電子 機器でも電波障害の発生源となる可能性がある.また, 携帯電話等による電波障害は,特に医療機器に対する 影響が問題となっている^[1].

本研究では, Fig.1 の様な周期的遮断板内に任意の開 ロをもつ遮蔽板をモデルとし,電磁波が z 軸の負の方 向 か ら 入 射 し た 時 の 散 乱 問 題 を 点 整 合 法 (Point-Matching Method)を用いて定式化する.

2. 解析法

遮蔽板はFig.1の様にz方向に一様で, x, y方向に周期 a, bをもつ対称構造で^[2],開口をもつ厚さ零の完全導体 板である.また,領域 $S_1(z < 0)$ の媒質定数を (ε_1, μ_0) , 領域 $S_1(z > 0)$ の媒質定数を (ε_2, μ_0) とする.

入射波は、次式のように領域 S₁より入射する.

$$E_{x}^{(i)} = \exp\{-j(kz - at)\}, H_{y}^{(i)} = Y_{1}E_{x}^{(i)}$$
(1)

但し, $Y_i = \sqrt{\varepsilon_i / \mu_0}$, i = 1, 2である.

Fig.1 の断面図を Fig.2 に示す. 散乱体の構造と入射 波の対称性から散乱波もx, y軸に対して対称であるこ とを考慮して,領域 S_{I}, S_{II} のヘルツベクトルは,次式 となる.

$$\pi_{z}^{(t)} = \sum_{m=1}^{N} \sum_{n=1}^{N} F_{mn} \cdot \sin(\frac{m\pi}{a}x) \cdot \sin(\frac{n\pi}{b}y) \cdot e^{-y_{mnZ}^{(2)}}$$
(2)

$$\pi_{z}^{(t)^{*}} = \sum_{m=1}^{N} \sum_{n=1}^{N} F_{mn}^{*} \cdot \cos(\frac{m\pi}{a} x) \cdot \sin(\frac{n\pi}{b} y) \cdot e^{-\gamma_{mnZ}^{(2)}}$$
(3)

$$\pi_{z}^{(r)} = \sum_{m=1}^{N} \sum_{n=1}^{N} G_{mn} \cdot \sin(\frac{m\pi}{a}x) \cdot \cos(\frac{n\pi}{b}y) \cdot e^{\gamma_{mnz}^{(1)}}$$
(4)

$$\pi_{z}^{(r)*} = \sum_{m=1}^{N} \sum_{n=1}^{N} G_{mn}^{*} \cdot \cos(\frac{m\pi}{a}x) \cdot \sin(\frac{n\pi}{b}y) \cdot e^{\gamma_{mnZ}^{(1)}}$$
(5)

式(2)~(5)を用いて,電磁界の透過波,反射波の成分^[3] (E_x,E_y,H_x,H_y)は,次式の関係式から求めることが出 来る.

$$E_x = \frac{\partial^2 \pi_z}{\partial z \partial x} - \mu \frac{\partial^2 \pi_z^*}{\partial t \partial y}, \quad E_y = \frac{\partial^2 \pi_z}{\partial z \partial y} + \mu \frac{\partial^2 \pi_z^*}{\partial t \partial x}$$
(6)

1:日大理工(院)・前 2:日大理工 教員・電気

Fig.1 Strutures and coordinate system of a conducting screen with arbitrary apertures.

Fig.2 Structure of a z-y plane

$$H_{y} = -\varepsilon \frac{\partial^{2} \pi_{z}}{\partial t \partial x} - \mu \frac{\partial^{2} \pi_{z}^{*}}{\partial z \partial y}, \quad H_{x} = z \frac{\partial^{2} \pi_{z}}{\partial t \partial y} - \mu \frac{\partial^{2} \pi_{z}^{*}}{\partial z \partial x} \quad (7)$$

式(6),(7)に式(2)~(5)を代入して整理すると,透過波の電界と磁界は次式で展開する.

$$E_{x} = F_{0}e^{-jk_{z}Z} + \sum_{m=0,n=0}^{N-N} \left[-\gamma_{m}^{(2)} \frac{m\pi}{a} F_{m} - ja\mu \frac{n\pi}{b} F_{m}^{*} \right] \cos \frac{m\pi}{a} x \cdot \cos \frac{n\pi}{b} y \cdot e^{-jmZ}$$
(8)

$$E_{y}^{t} = \sum_{m=1}^{N} \sum_{n=1}^{N} \left[\gamma_{nm}^{(2)} \left(-\frac{n\pi}{b} \right) F_{mn} - j\omega\mu \frac{m\pi}{a} F_{nm}^{*} \right] \sin \frac{m\pi}{a} x \cdot \sin \frac{n\pi}{b} y \cdot e^{-\gamma_{mZ}^{(2)}}$$
(9)

$$H_x^{t} = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \left[-j\omega\varepsilon_2 \frac{n\pi}{b} F_{nn} + \gamma_{nn}^{(2)} \frac{n\pi}{a} F_{nn}^{*} \right] \sin(\frac{n\pi}{a}x) \sin(\frac{n\pi}{b}y) e^{-\gamma_{nn}^{(2)}}$$
(10)

$$H_{y}^{t} = \frac{F_{0}}{Z_{2}} e^{-jk_{2}z} + \sum_{m=1}^{N} \sum_{n=1}^{N} \left[-j\omega\varepsilon_{2} \frac{n\pi}{b} F_{mn} - \gamma_{mn}^{(2)} \frac{m\pi}{a} F_{mn}^{*} \right]$$

$$\cdot \cos(\frac{m\pi}{a} x) \cos(\frac{n\pi}{b} y) e^{-\gamma_{mnz}^{(2)}}$$
(11)

同様にして、反射波の電界と磁界は次式となる. $E = G_0 e^{-jk_1Z}$

$$+\sum_{m=0,m=0}^{N} \sum_{m} \gamma_{m}^{(i)} \frac{m\pi}{a} Gm - ja\mu \frac{n\pi}{b} G_{m}^{\dagger} \bigg] \cos(\frac{m\pi}{a} x) \cdot \cos(\frac{n\pi}{b} y) \cdot e^{j_{mz}^{(i)}}$$
(12)

$$E_{y}^{r} = \sum_{m=1}^{N} \sum_{n=1}^{N} \left[-\gamma_{nm}^{(1)} \frac{n\pi}{b} G_{nm} - j\omega\mu \frac{m\pi}{a} G_{nm}^{*} \right] \sin \frac{m\pi}{a} x \cdot \sin \frac{n\pi}{b} y \cdot e^{\gamma_{mz}^{(1)}}$$
(13)

$$H_{x}^{r} = \sum_{m=1}^{N} \sum_{n=1}^{N} \left[-j\omega\varepsilon_{1} \frac{n\pi}{b} G_{mn} - \gamma_{mn}^{(1)} \frac{m\pi}{a} G_{mn}^{*} \right]$$

$$:\sin \frac{m\pi}{x} x \cdot \sin \frac{n\pi}{x} y \cdot e^{\gamma_{mz}^{(1)}}$$
(14)

$$H_{y}^{r} = \frac{G_{0}}{Z_{1}} e^{lk_{2}z} \sum_{m=1}^{N} \sum_{n=1}^{N} \left[-j\omega\varepsilon_{1} \frac{m\pi}{a} G_{mn} + \gamma_{mn}^{(1)} \frac{n\pi}{b} G_{mn}^{*} \right]$$

$$\cdot \cos \frac{m\pi}{a} x \cdot \cos \frac{n\pi}{b} y \cdot e^{\gamma_{mnZ}^{(1)}}$$
(15)

ここで、 $\mathbf{F}_{m,n}$, $\mathbf{G}_{m,n}$ はTM波の展開係数で、 $\mathbf{F}_{m,n}^*$, $\mathbf{G}_{m,n}^*$ は TE 波の展開係数である.また、 $\gamma_{mn}^{(i)}$ は次式となる.

$$\gamma_{m,n}^{(i)} \triangleq \sqrt{\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2 - \omega^2 \mu_0 \varepsilon_i}, \quad i = 1, 2,$$
(16)

展開係数 $\mathbf{F}_{m,n}$, $\mathbf{F}_{m,n}^*$, $\mathbf{G}_{m,n}$, $\mathbf{G}_{m,n}^*$ は、次の境界条件式から 求まる.

(1) 遮蔽板の導体上で,

$$\begin{bmatrix} E_{x}^{i} \end{bmatrix}_{z=0} + \begin{bmatrix} E_{x}^{r} \end{bmatrix}_{z=0} = \begin{bmatrix} E_{x}^{i} \end{bmatrix}_{z=0} = 0$$

$$\begin{bmatrix} E_{x}^{i} \end{bmatrix}_{z=0} = \begin{bmatrix} E_{x}^{i} \end{bmatrix}_{z=0} = 0$$
(17)

(2) 遮蔽板の開口上で、

$$\begin{bmatrix} E_x^i \end{bmatrix}_{r=0} + \begin{bmatrix} E_x^i \end{bmatrix}_{r=0} = \begin{bmatrix} E_x^i \end{bmatrix}_{r=0}$$
(18)

$$\begin{bmatrix} E_{y}^{r} \\ \end{bmatrix}_{z=0}^{z=0} = \begin{bmatrix} E_{y}^{t} \\ \end{bmatrix}_{z=0}^{z=0} = 0$$

$$\begin{bmatrix} H_{y}^{i} \\ \end{bmatrix}_{z=0}^{z=0} + \begin{bmatrix} H_{y}^{r} \\ \end{bmatrix}_{z=0}^{z=0} = \begin{bmatrix} H_{y}^{t} \\ \end{bmatrix}_{z=0}^{z=0} = 0$$
(19)

となる.

式(17)から遮蔽板の導体上で,

$$F_{0} + \sum_{m=1}^{N} (-\gamma_{m0}^{(2)} \frac{m\pi}{a} F_{m0}) \cos \frac{m\pi}{a} x + \sum_{n=1}^{N} (-j\omega\mu \frac{n\pi}{b} F_{0n}^{*}) \cdot \cos \frac{n\pi}{b} y + \sum_{m=1}^{N} \sum_{n=1}^{N} \left[-\gamma_{mn}^{(2)} \frac{m\pi}{a} F_{mn} - j\omega\mu \frac{n\pi}{b} F_{mn}^{*} \right] \cos \frac{m\pi}{a} x \cdot \cos \frac{n\pi}{b} y = 0$$
(20)

$$\sum_{m=1}^{N} \sum_{n=1}^{N} \left[\gamma_{mn}^{(2)} \frac{n\pi}{b} F_{mn} - j \alpha \mu \frac{m\pi}{a} F_{mn}^* \right] \sin \frac{m\pi}{a} x \cdot \sin \frac{n\pi}{b} y = 0$$
(21)

式(18),(19)の遮蔽板の開口上で,

$$-\frac{F_0}{Z_2} + \sum_{m=0}^{N} \sum_{n=0}^{N} \left[-j\omega\varepsilon_2 \frac{m\pi}{a} F_{nn} - \gamma_{nn}^{(2)} \frac{n\pi}{b} F_{nn}^* \right] \cos\frac{m\pi}{a} x \cdot \cos\frac{n\pi}{b} y \quad (22)$$

$$\frac{F_{0}}{Z_{1}} + \sum_{m=1}^{N} \sum_{n=1}^{N} \left[-j\omega\varepsilon_{1} \frac{m\pi}{a} G_{mn} + \gamma_{mn}^{(1)} \frac{n\pi}{b} G_{mn}^{*} \right]$$
(23)
$$\cdot \cos \frac{m\pi}{a} x \cdot \cos \frac{n\pi}{b} y = -\frac{2E_{0}}{Z_{1}}$$

$$-\left(\frac{1}{Z_{1}} + \frac{1}{Z_{2}}\right)F_{0} + \sum_{m=1}^{N} \left[j\omega \frac{m\pi}{a} (\varepsilon_{1} \frac{\gamma_{m0}^{(2)}}{\gamma_{m0}^{(1)}} + \varepsilon_{2})F_{m0} \right] \cos \frac{m\pi}{a} x$$

$$+ \sum_{n=1}^{N} \left[\frac{n\pi}{b} (\gamma_{0n}^{(1)} + \gamma_{0n}^{(2)})F_{0n}^{*} \right] \cos \frac{n\pi}{b} y$$

$$+ \sum_{m=0}^{N} \sum_{n=0}^{N} \left[j\omega \frac{m\pi}{a} (\varepsilon_{1} \frac{\gamma_{mn}^{(2)}}{\gamma_{mn}^{(1)}} + \varepsilon_{2})F_{mn} + \frac{n\pi}{b} (\gamma_{mn}^{(1)} + \gamma_{mn}^{(2)})F_{mn}^{*} \right]$$

$$\cdot \cos \frac{m\pi}{a} x \cdot \cos \frac{n\pi}{b} y = -\frac{2E_{0}}{Z_{1}}$$
(24)
$$\sum_{m=1}^{N} \sum_{n=1}^{N} \left[-j\omega\varepsilon_{1} \frac{n\pi}{b} G_{m} - \gamma_{mn}^{(1)} \frac{m\pi}{a} G_{m}^{*} \right] \sin \frac{m\pi}{a} x \cdot \sin \frac{n\pi}{b} y = 0$$

$$\sum_{m=1}^{N} \sum_{n=1}^{N} \left[-j\omega\varepsilon_{2} \frac{n\pi}{b} F_{m} + \gamma_{mn}^{(2)} \frac{m\pi}{a} F_{mn}^{*} \right] \sin \frac{m\pi}{a} x \cdot \sin \frac{n\pi}{b} y = 0$$

$$\sum_{m=1}^{N} \sum_{n=1}^{N} \left[j\omega \frac{n\pi}{b} (\varepsilon_{1} \frac{\gamma_{mn}^{(2)}}{\gamma_{mn}^{(1)}} + \varepsilon_{2}) F_{mn} - \frac{m\pi}{a} (\gamma_{mn}^{(1)} - \gamma_{mn}^{(2)}) F_{mn}^{*} \right] .$$

$$\sin \frac{m\pi}{a} x \cdot \sin \frac{n\pi}{b} y = 0$$
(25)

となる.標本点は遮蔽板上を(2N+1)等分した分割点

$$x \to x_{\alpha} = \frac{a}{2N+1}(2\alpha)$$

$$y \to y_{\beta} = \frac{b}{2N+1}(2\beta)$$

, N

で境界条件を満足させる.

上記標本点から得られる連立方程式は、(2N²+2N+1) の次元数となる. 透過係数 ρ, は次式より求まる.

$$\rho_{t} = \frac{Z_{1}}{Z_{2}} \frac{\left|F_{0}\right|^{2}}{\left|E_{0}\right|^{2}} + \frac{Z_{1}}{4\left|E_{0}\right|^{2}} R_{e} \left[\sum_{m=1}^{N} -j\omega\varepsilon_{2}\left(\frac{m\pi}{a}\right)^{2} \gamma_{m0}^{(2)} \left|F_{m0}\right|^{2} + \sum_{n=0}^{N} j\omega\mu\left(\frac{m\pi}{b}\right)^{2} \overline{\gamma_{0n}^{(2)}} \left|F_{0n}^{*}\right|^{2} + \sum_{m=1}^{N} \sum_{n=1}^{N} j\omega\left\{\left(\frac{m\pi}{a}\right)^{2} + \left(\frac{n\pi}{b}\right)^{2}\right\} \\ \cdot \left\{\mu\overline{\gamma_{mn}^{(2)}} \left|F_{mn}^{*}\right|^{2} - \varepsilon_{2}\gamma_{mn}^{(2)} \left|F_{mn}\right|^{2}\right\}\right]$$
(26)

3. まとめ

本文では、任意の周期的開口をもつ導体遮蔽板によ る電磁波の散乱についての定式化を行った. 今後は数 値解析を行っていく.

- **4. 参考文献** [1] 最新電磁波の吸収と遮蔽, pp.205-335, 日経技術図
- 取制电磁波00级块之运融, pp.203-333, 日程投附函 書, 1999.
 C.C.Chen: 'Transmission through a conducting screen perforated periodically with apertures", Proc. IEEE, Trans. MTT-18,9(Sept. 1970).
 細野, 日向, 倉島:電子通信学会論文誌 Vol.56-B No.5 pp206-208, 1973