L-44

メカニカルシャッターを用いた強力空中バースト音波の形成

Burst Waves Generation of High-Intensity Aerial Ultrasonic Waves Using Mechanical Shutter

○大隅歩¹, 伊藤洋一¹ *Ayumu Osumi¹, youichi Ito¹

Abstract: We propose a new method to shape a burst wave of high-intensity ultrasonic waves without signal processing. In this report, we attempted to shape the burst wave has excellent properties of rise up and fall time by mechanical shutter.

1. はじめに

空中に強力な超音波を照射することが可能な点集束 型超音波音源「1」は、液体や微粒子の非接触除去や非 接触マニュピレーション、非破壊検査など種々の工 業・産業技術に応用されている。このような技術に超 音波を利用する場合、連続波の他にバースト波やチャ ープ波などを用いることが多々ある。一方、音源を間 欠的に駆動し、これらの波を照射する場合その立ち上 がり、立ち下がり時間は、応用技術の効果や精度、感 度等に大きく影響を与える。筆者らが開発した極めて 強力な空中超音波を放射できる点集束型音源を、バー スト駆動し音波放射した場合、機械的なQ値が高いた め立ち上がり、立下り時間は遅くなってしまう。そこ で本報告では、点集束音源とメカニカルシャッターを 組み合わせて、その特性を改善、制御する強力空中バ ースト音波の形成方法 [2] について検討を行ったので 報告する。

2. 実験装置と方法

Fig. 1 に強力空中バースト音波形成に用いる実験装置を示す。強力空中超音波の発生には、縞モード振動 板式点集束型音源(20 kHz)を使用する。この音源から放射される音波は、音源開口から距離 140 mm の位置で 直径約 10 mm の円形断面内に集束する。実験は、Fig. 1 のようにメカニカルシャッター(外形 60mm, 内径 30 mm、厚さ 12 mm)の開閉用ブレード部(開口から 10 mm の位置)と音波集束点 O の位置を一致させて配置 する。波形計測は、シャッターの開閉用ブレード部の すぐ後ろに 1/8 インチマイクロホン(GRAS 社 40DP)を 配置することで、メカニカルシャッターで強制的に切 断されバースト波となった音波を受波し、オシロスコ ープで観測する。

3. シャッター内部の音場

Fig.2は、Fig.1のy軸上(集束点Oを通る軸)に沿った自由空間音場とシャッター内部の音場を計測した結果である。なお、図の斜線部はシャッター内部、横

1:日大理工・教員・電気

Fig. 1 Schematic view of experimental device Position of Shutter blade = Converging point O

Fig. 3 Relationship between electric input power and sound pressure at fundamental frequency and harmonic frequencies

軸は集束点 O を原点とした距離関係を示しており、正 方向が音源側である。計測は供給電力0.5 W で行った。 結果より、自由空間音場と異なり、シャッター内部に 音圧のピークが存在する音圧分布になっている。シャ ッターを配置した時の集束点 O における音圧の供給電 力特性を Fig. 3 に、音波波形の一例を Fig. 4 (a), (b)に示 す。結果より、照射音波強度が増すほど、高調波成分 の割合が大きくなり、波形も大きく歪んでいる^[3] 4. バースト音波の形成

4.1 バースト駆動による音波放射特性

Fig. 1 に示す空中超音波音源をバースト駆動させた 時の放射音波を集束点 O で観測した。印加電圧のバー スト周期は 250 ms、デューティー比は 50%とした。Fig. 5 (a), (b)は、音源への供給電力を 0.5 及び 30 W にした 時の結果であり、供給電力の大きさに関わらず、いず れも立ち上がり、立ち下がりに約 60 ms 要している。 また、供給電力が 30 W になると非線形効果により波形 が歪み、バースト波の形状に変化が生じる。なお、電 圧の印加時間が約 125 ms 以下では、連続駆動時の音圧 値に達しないことが分かった。

4.2 メカニカルシャッターによるバースト音波形成

Fig.1の超音波音源を用いて連続波を照射し、メカニ カルシャッターによりバースト波を形成することを試 みた。シャッタースピードは8ms~4sまで可変可能で ある。Fig.6(a),(b)は結果の一例で、供給電力を0.5及 び30Wとした時の結果を示している。結果より、供給 電力に関わらず立ち上がり、立ち下がり時間はともに 約2ms以下であり、急峻な立ち上がり、立ち下がりを 持つ強力空中バースト音波が形成出来ている。なお、 上述の結果と同様に音波強度の増加に伴い、放射音波 に強い非線形性が表れていた。

5. まとめ

連続的に駆動する空中超音波音源とメカニカルシャ ッターを用いて、強力空中バースト音波の生成を試み た。その結果、本手法において高い音波強度を保ちつ つ、急峻な立ち上がり、立ち下がりを持つバースト音 波を形成できることを明らかにした。

6. 参考文献

 [1] 伊藤洋一:「縞モード振動板並びに放物面反射板を 用いた一点集束型空中超音波音源」音響学会誌, Vol.
46, pp. 383-390, 1990.

[2] 大隅歩,伊藤洋一:「メカニカルシャッターを用いた強力空中超音波のバースト波形成」,日本音響学会秋季研究発表会講演論文集,pp.1319-1320, 2012.

[3] 鎌倉友男:「非線形音響の基礎」, 愛知出版, 1996.

Fig. 4 Sound pressure waveform at the converging point ; (a) 0.5 W, (b) 30 W

Fig. 5 Sound pressure waveform of burst wave at the converging point; (a) 0.5 W, (b) 30 W

Fig. 6 Sound pressure waveform of burst wave using mechanical shutter at the converging point ; (a) 0.5 W, (b) 30 W