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Abstract : It has been the focus of attention in developing ultra high density recording and microfabrication technologies to analyze

electromagnetic fields near nanoparticles. Recently, nano antennas to achieve an ultra high speed and high density magnetic

recording have been investigated by using a boundary integral equation method. In this report, we investigate the computational

accuracy of the method due to the static approximation.

1. Introduction

It is important for developing ultra high density recording

to analyze the electromagnetic fields near nanoparticles.

Recently, we designed nano antennas to achieve an ultra

high speed and high density magnetic recording using a

boundary integral equation method (BIEM) in the static

approximation [1]. We can easily find some plasmon modes

which are related to the shapes of objects by using this

method [2]. However, the computational error due to the

static approximation is still under investigation.

In this report, we analyze the electromagnetic fields near

the nanoparticles by using the BIEM and investigate the

computational accuracy.

2. Formulation

The normal component of the electric fields satisfies the

following boundary condition [1-3]:
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where n is a unit vector of normal to the surface, iE is the

incident electric field, 
0E is the electric field inside the

object, and 
0E is the scattered electric field.

When the free-space wavelength is much larger than the

scale of the object, the normal components of the electric

field on the surface are given in terms of the static

approximation, such as
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where  indicates the electric charge density on the

surface.

By substituting Eq. (1) into Eq. (2), we obtain the

expression
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Figure 1. Geometry of a nano sphere.
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Calculating a matrix equation which is obtained by

discretizing Eq. (3), we can find the surface electric charge

density  .

3. Computational Results

We analyze the electric fields of a nano sphere as shown

in Figure 1. The incident wave is a sinusoidal plane wave

with the amplitude of 1.0 V/m. The incident wave

propagates to the positive z-direction and has the

x-component of the electric field.

Figure 2 shows the relative error between the

computational result and exact solution for varying the

wavelength. The radius r is equal to 3 nm and the dielectric

permittivity 02  . As the wavelength becomes longer, the

relative error becomes small due to the approximation. The

error is of the order of 10-4 when the wavelength is longer

than 580 nm.
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Next we analyze the electric fields of a gold sphere with

radius r = 3 nm. The observation point is at y = z = 0 and x =

4.5 nm. The dielectric permittivity of the gold sphere in the

frequency domain )( is defined by the Lorentz-Drude

model as [4]
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where p is the plasma frequency, K is the number of

oscillators with the frequency l , 0 and k are

collision frequencies, and A0 and Al are constants which

depend on the material.

Figure 3 shows the wavelength response of the electric

field intensity. Both the computational result and the exact

solution are in a good agreement.

Figure 4 shows the relative error for varying the number

of unknowns N when the wavelength is 200 and 800 nm.

Increasing the number of unknowns N, the relative error

converges. In spite of the number of unknowns, the relative

error for 800 nm is always smaller than that for 200 nm.

4. Conclusions

In this report, we analyzed the electromagnetic fields near

nanoparticles by using the BIEM in the static approximation.

We clarified the relation between the computational

accuracy and the wavelength by comparison of the exact

solutions.
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Figure 2. Relative error for varying the wavelength.
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Figure 3. Wavelength responses of the electric field

intensity for a gold sphere when r = 3 nm.
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Figure 4. Relative error for varying the number of

unknowns N.
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