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Abstract: A media in the high frequency electromagnetic fields have frequency dispersion. To solve the electromagnetic scattering 

problems of such media, the Maxwell-Newton and Maxwell-Schrödinger schemes have been developed. In this paper, we compare 

behavior of electrons in a nanoplate by using the two schemes and clarify that they give the same resuts when the electrostatic 

potential in the nanoplate is a single-well structure. 

 

1． Introduction 

A media in the high frequency electromagnetic fields have 

the frequency dispersion. To solve the electromagnetic 

scattering problems of such media, the Maxwell-Newton [1] and 

Maxwell-Schrödinger [2, 3] schemes have been developed. 

However, the applicable range of two schemes have not been 

clear. 

In this paper, we compare behavior of electrons in a 

nanoplate by using the Maxwell-Newton and 

Maxwell-Schrödinger schemes and clarify that the two 

schemes give the same resuts when the electrostatic potential in 

the nanoplate is a single-well structure. 

 

2． Formulation 

Maxwell’s equations with the polarization current density J 

can be written as 
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We simulate Maxwell’s equations by applying the Finite 

Difference Time Domain(: FDTD) method [4]. 

  The one of numerical methods to treat a dispersive medium 

is given by evaluating the polarization current density obtained 

from behavior of electrons in the medium: An electron in the 

electromagnetic fields is governed by the following Newton’s 

equation in the clasical theory: 
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where we assume that an electron does not feel any frictional 

forces and is constrained by the electrostatic potential V. 

  The polarization vector and polarization current density in 

the Maxwell-Newton scheme [1] are defined by 
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We can simulate Eqs. (5) and (6) by appling the finite 

difference formula [1]. The Maxwell-Newton scheme can be 

realized by simulating Eqs. (1), (2) and Eqs. (5), (6). 

An electron in the electromagnetic fields is governed by the 

following Schrödinger’s equation in the quantum theory: 
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where we have applied the length gauge [5]. We simulate the 

wave function in Eq. (7) by applying the FDTD method[6]. 

  The polarization vector and polarization current density in 

the Maxwell-Schrödinger scheme [3] are defined by 
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We can simulate Eqs. (9), (10) by appling the finite 

difference formula and quadrature [3]. The Maxwell 

-Schrödinger scheme can be realized by simulating Eqs. (1), (2), 

and (10). 
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Figure 1. Coordinate systems of the nanoplate. 
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3． Numerical results 

A nanoplate shown in Figure 1 is investigated. We assume 

that the nanoplate is uniform along the y-z plane. All electrons 

in the nanoplate are constrained by a harmonic oscillator and 

can only move along the y-direction. The electrostatic potential 

V is given by the following expression in this case: 
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The potential Vs is the single-well structure as shown in 

Figure 2. The electricmagnetic fields have only Ey and Hz 

components and the incident wave is given by the narrow 

gaussian pluse shown in Figure 3. 

Figure 4 shows a comparison of the time response of the 

polarization vector. The circles and the solid line indicate the 

results obtained by the Maxwell-Newton and Maxwell 

-Schrödinger schemes, respectively. It is shown that both 

results are in an excellent agreement. In addition, we have 

confirmed that two schemes give the same results for the 

polarization current density and electric field in this case. 

 

4． Conclusions 

We have compared the behavior of electrons in a nanoplate 

by using the Maxwell-Schrödinger and Maxwell-Newton 

schemes based on the FDTD method. It has been clarified that 

two schemes give the same resuts when the electrostatic 

potential in the nanoplate is the single-well structure. 
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Figure 2. Electrostatic potential Vs. 
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    Figure 3. Incident wave in time domain. 
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       Figure 4. Comparison of the time response of the 

polarization vector. 
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