O-10

暗黒物質の semi-annihilation

Semi-annihilation of Dark matter

○ 菊間 玄^{*1},二瓶 武史^{*2} Haruka Kikuma,Takeshi Nihei

Abstract: We show that the thermal relic abundance of dark matter can be affected by a new type of reaction: semi-annihilation. Semi-annihilation takes the schematic from $\chi\chi \to \bar{\chi}\phi$, where χ is stable dark matter particle and $\bar{\chi}$ is antiparticle of χ , ϕ is an unstable state. We give a complete set of coupled Boltzmann equations in the presence of semi-annihilation, and study two toy models featuring this process.

1. はじめに

暗黒物質とは宇宙にある星間物質で自力で光を発しな い,または光を反射しない物質とされている. WMAP 衛 星 [1] によると暗黒物質の密度パラメータの範囲は

$$0.0975 \le \Omega h^2 \le 0.1223 \tag{1}$$

であり,現在の宇宙の約 22% を占めるとされている.た だし, Ω とhは現在における暗黒物質のエネルギー密度 $\rho_{\chi,0}$,臨界エネルギー密度 $\rho_{c,0}$, Hubble 膨張率 H_0 より

$$\Omega \equiv \frac{\rho_{\chi,0}}{\rho_{c,0}} , \ h \equiv \frac{H_0}{100 \text{ km} \cdot \text{s}^{-1} \cdot \text{Mpc}^{-1}}$$
(2)

暗黒物質は現在わかっている素粒子では説明できない未 知の粒子であるが,特性として電磁相互作用・強い相互作 用はしないが,重力相互作用はする安定的な物質であるこ とはわかっている.

本研究では通常の $\chi \bar{\chi} \rightarrow \phi \phi$ の過程 (暗黒物質を χ , 暗黒物質の反粒子を $\bar{\chi}$, χ と相互作用する標準模型の粒 子を ϕ とする) に対し, semi-annihilation と呼ばれるの $\chi \chi \rightarrow \bar{\chi} \phi$ の過程における残留エネルギー密度の計算を行 い,通常の annihilation の場合と比較を行う.

2.Z₃ 模型と semi-annihilation

暗黒物質は安定かつ重い粒子と考えられている.しか し、一般に重い粒子は崩壊し、軽い粒子に変化しやすい. そのため暗黒物質の安定性を保つために離散対称性がある と考えられている.多くの場合は Z_2 対称性を課し、暗黒 物質の安定性を保証している.大局的な離散対称性は重力 によって破られるので、暗黒物質の安定性を保証する離散 対称性はゲージ群の一部である.しかし、破られず残った ゲージ群が必ずしも Z_2 である必要がなく、一般に Z_N 対 称性 (N = 2, 3, 4, ...)になり得る [2].

そこで本研究では Z_3 対称性を持った模型を考える [3]. $\chi \geq \phi$ が Z_3 変換を受けた際の変化を以下のように決 める.

 $\begin{array}{ccc} \chi & \longrightarrow (-1)^{2/3} \chi \\ \phi & \longrightarrow & \phi \end{array}$

相互作用ラグランジアン LZ3 は実数であることと繰り込

み可能性から, 暗黒物質の質量 m_{χ} を用いて (3) 式となる. $\mathcal{L}_{Z_3} = m_{\chi}^2 \chi^{\dagger} \chi + a_1 \chi^{\dagger} \chi \phi + a_2 \chi^{\dagger} \chi \phi^2 + a_3 \chi^3 \phi - V(\phi)$ (3) ただし, $a_1 \sim a_3$ は適切な係数, $V(\phi)$ は χ を含まない項 である. このラグランジアンから許される暗黒物質の消滅 過程として図 1 のようなの二つが考えられる. すなわち, Z_3 対称性があるならば, semi-annihilation も考える必要 がある.

3.Semi-annihilation を考慮した Boltzmann 方程式

Semi-annihilation を考慮して Boltzmann 方程式を修 正する. 暗黒物質の数密度 n_{χ} , 熱平衡にある暗黒物質の数 密度 n_{χ}^{eq} , 各過程の散乱断面積を $\langle \sigma v \rangle$ とすると

$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma v \rangle_{\chi\bar{\chi} \to \phi\phi} \left[n_{\chi}^2 - (n_{\chi}^{\rm eq})^2 \right] - \frac{1}{2} \langle \sigma v \rangle_{\chi\chi \to \bar{\chi}\phi} \left[n_{\chi}^2 - n_{\chi} n_{\chi}^{\rm eq} \right]$$
(4)

と修正される. 宇宙のエントロピー密度 *s*, 温度 *T* を 用いて, (4) 式を共動数密度 $Y = n_{\chi}/s$ と無次元変数 $x = m_{\chi}/T$ を変数とする式に書き換えると (5) 式となる.

$$\frac{dY_{\chi}}{dx} = -\frac{\lambda_{\chi\bar{\chi}\to\phi\phi}}{x^2} \left[Y_{\chi}^2 - (Y_{\chi}^{\rm eq})^2\right] -\frac{1}{2} \frac{\lambda_{\chi\chi\to\bar{\chi}\phi}}{x^2} \left[Y_{\chi}^2 - Y_{\chi}Y_{\chi}^{\rm eq}\right]$$
(5)

ただし、 λ_i はs、 $H e m_\chi$ を変数するものに書き換えて

$$\lambda_i \equiv \frac{s(m_\chi)}{H(m_\chi)} \langle \sigma v \rangle_i \tag{6}$$

(5) 式から暗黒物質が熱平衡から離脱するときの x を求 める式が導かれる. x_f において $Y_{\chi} - Y_{\chi}^{eq} = cY_{\chi}^{eq}$ となる 条件 (本研究では $c = \sqrt{2} - 1$ とする [4]) の下で,相対論 的な粒子の自由度 g_* ,暗黒物質の自由度 g_{χ} , プランク質 量 M_{Pl} , 熱平衡から離脱する $x \in x_f$ とすると

$$x_{f} = \log \left[0.038c \left(c+2 \right) \langle \sigma v \rangle_{\chi \bar{\chi} \to \phi \phi} \frac{g_{\chi} m_{\chi} M_{\text{Pl}}}{\sqrt{g_{*} x_{f}}} \right] + \log \left[1 + \frac{1}{2} \frac{c+1}{c+2} \frac{\langle \sigma v \rangle_{\chi \chi \to \bar{\chi} \phi}}{\langle \sigma v \rangle_{\chi \bar{\chi} \to \phi \phi}} \right]$$
(7)

となる. 求めた x_f において熱平衡から離脱が始まるとして, (5) 式を近似的に解くことができる.

$$Y_{\chi}(x) = \frac{Y_{\chi}(x_f)}{1 - Y_{\chi}(x_f) \left(\lambda_a + \frac{1}{2}\lambda_s\right) \left(\frac{1}{x} - \frac{1}{x_f}\right)} \tag{8}$$

4. 残留エネルギー密度

最終的な Y_{χ} の値 $Y_{\chi}(\infty)$ が求まるので,現在の $s \in s_0$ として暗黒物質の密度パラメータを求めることができる.

$$\Omega h^{2} = \frac{m_{\chi} s_{0} Y_{\chi}(\infty)}{\rho_{c,0}} h^{2} = 2 \times \frac{1.07 \times 10^{9} \text{ GeV}^{-1}}{\sqrt{g_{*}} M_{Pl} J(x_{f})} \quad (9)$$

$$\int_{0}^{\infty} \langle \sigma v \rangle_{\chi\bar{\chi} \to \phi\phi} + \frac{1}{5} \langle \sigma v \rangle_{\chi\bar{\chi} \to \bar{\chi}\phi}$$

 $J(x_f) \equiv \int_{x_f} \frac{\langle \psi c / \chi \chi \to \phi \phi + 2 \rangle \langle \psi c / \chi \chi \to \chi \phi \rangle}{x^2} dx \quad (10)$ m_{\chi} を 1TeV とした際に,散乱振幅と残留密度の関係は
図 2 のようになる. $\chi \bar{\chi} \to \phi \phi$ の散乱振幅 $\eta_{a}, \chi \chi \to \bar{\chi} \phi$ の

Figure 2. Relic density

5. 数值解析

図 2 より $\eta_a = \eta_s = 0.47$ として両過程が mix された場 合,(5)の数値解と近似解を図示すると図 3 のようになる. また pure annihilation($\eta_a = 0.61, \eta_s = 0$)に対して pure semi-annhilation($\eta_a = 0, \eta_s = 0.72$), mix の比をとった ものが図 4 である.一方で質量,散乱断面積が特定の値で 固定された際,上記の 3 過程の残留量は図 5 ようになる.

Figure 3. Solution of Boltzmann equation

Figure 4. The ratio between each numerical solution and one for pure annihilation

Figure 5. Case that m_{χ} and $\langle \sigma v \rangle$ are fixed

6. まとめと今後の課題

本研究では暗黒物質の semi-annihilation の過程を考慮 した残留エネルギー密度の計算を行い,通常の annihilation の場合との比較を行った. 無次元変数 x が十分に大 きくないところでは, semi-annhilation の過程の比率が多 い方が暗黒物質が多く残るという解析結果を得た.

今後の課題は質量, 散乱断面積を固定した際の結果が, 一般にいえることなのかを検証していくことである.

参考文献

[1] J. Dunkley et al.

Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Likelihoods and Parameters from the WMAP data arXiv:0803.5286v2(2008)

[2] G.Belanger, K.Kannike, A.Pukhov, M.Raidal Impact of semi-annihilation on dark matter phenomenology an example of Z_N symmetric scalar dark matter

arXiv: 1201.2962v1(2011)

- [3] Francesco D'Eramo and Jesse Thaler Semi-annihilation of Dark Matter arXiv:1003.5912v3(2010)
- [4] E. W. Kolb and M. S. Turner The Early universe
- 62 Front. Phys. 69 (1990) 1-547

1262