他動的運動訓練が脊髄損傷者の身体状況に及ぼす影響
—その3 体調管理日誌の時系列分析と筋骨量及び肺活量測定結果—
Effects of Passive Exercise Training on the Body Condition of People with Spinal Cord Injuries
—Part3. Time Series Analysis of Records in a Daily Physical Status Log And The Result Of The Amount of Muscles And Spirometry—

○田中淳也1, 蜂巢浩生2, 三上功生3, 倉形貴織4, 横田理5, 根元哲也6
"Junya Tanaka1, Hiroyo Hachisu2, Sato Kotohiko3, Kosei Mikami4, Reo Kurakata5, Kou Sakurada6, Tetuya Nemoto6"

Abstract: The purpose of this study is to determine the effects of passive exercise training “moving one’s arm and bending forward” on physical condition of one patient with higher cervical spinal cord injury. Records in a daily physical status log were used for the analysis. Previous report observed seasonal influence. In this paper, we applied the time series analysis. Moreover, the result of the amount of muscles and spirometry was also used for analysis.

1. はじめに
昨年度は日誌記録を季節毎に集計し、その経年変化を報告した。今回は毎日の記録の時系列分析と筋骨量及び肺活量測定結果から他動的運動訓練（以下他動運動）の影響を検討した。

2. 調査方法
2-1. 他動的運動訓練について
調査対象者 A氏（Table 1）が行っている他動運動の内容についてを既報⑦を参照した。

2-2. 日誌記録の分析方法について
本研究では2005年10月13日から2012年10月12日までの7年間の日誌記録を分析対象とした。10月13日から毎月10日12日までを1年間として、バイタルサイクル（体温、脈拍数、呼吸数、筋張力、脈圧）は毎日の記録を単純移動平均法（90日）で平滑化したデータ。服薬（向精神薬、抗血圧薬、抗ん、気管支拡張薬）は1ヶ月毎の服薬量を分析した。

2-3. 筋骨量測定及び肺活量測定について
新たな研究項目として筋骨量測定（Table 2）を導入し、2012年8月（調査6回目）に第1回測定を行った。その後、約半年で1回実施しており、現時点（2013年9月）まで3回実施した。測定体位は仰臥位姿勢で測定装置（フィジオナート製、Physion MD）からA氏の上腕、前腕、大腿、下腿、体幹に電極を貼り付け、人体内血流電流を流しあ体電気インピーダンス測定を行う。その結果と身体情報（身長、体重、生年月日）をもとに身体の大さのの筋骨量は決定される。また第3回筋骨量測定と同時に第1回肺活量測定（Table 3）を行った。測定体位は仰臥位姿勢で電子スパイロメーター（フクダ電子製、SpiroSit SP-350 COPD）を用いて測定を行った。

3. 結果及び考察
体温（Fig. 1）は調査2回目が最も皮膚温を通じて変動が小さく、平均値71%に近い値で推移している。次いで調査2回目よう体温が低く、調査3回目で変動が大きかった。これは調査2回目以外で服薬率が下がった向精神薬（Fig. 5）の筋疲労作用が影響を及ぼし、体調を与えた可能性がある。特に脈拍数はは無変の変化が下落するが、調査1回目で脈圧が下がっている。脈圧測定の影響を考慮すると、脈圧の変動が調査1回目でM氏に近づく傾向が示されている。

Table 1. A universe person's profile

<table>
<thead>
<tr>
<th>氏名</th>
<th>性別</th>
<th>年齢</th>
<th>髪型</th>
<th>休憩時</th>
<th>視力低下</th>
<th>劦性</th>
</tr>
</thead>
<tbody>
<tr>
<td>A氏</td>
<td>男</td>
<td>65</td>
<td>170</td>
<td>不定</td>
<td>間欠</td>
<td>度数</td>
</tr>
</tbody>
</table>

* 記入項目と解答欄の詳細は、本研究の一部として表記されている。

4. 大きさの骨認定と検査条件

5. 結論

6. 申告

7. 資料

Table 2. A universe person's profile

<table>
<thead>
<tr>
<th>氏名</th>
<th>性別</th>
<th>年齢</th>
<th>身長</th>
<th>髪型</th>
<th>休憩時</th>
<th>視力低下</th>
<th>劦性</th>
</tr>
</thead>
<tbody>
<tr>
<td>A氏</td>
<td>男</td>
<td>65</td>
<td>170</td>
<td>不定</td>
<td>間欠</td>
<td>度数</td>
<td>度数</td>
</tr>
</tbody>
</table>

* 記入項目と解答欄の詳細は、本研究の一部として表記されている。

1：日大理工・院・建築、Graduate School of S and T, Nihon Univ
2：日大理工・教授・建築、College of S and T, Nihon Univ
3：日大工学部・教授・建築、College of Industrial Technology, Nihon Univ
4：日大理工・教授・建築、College of S and T, Nihon Univ
かった。ヒーリング調査でA氏から「約3年前（訓練4年目）の測定結果は1.3L程度であった」とのコメントがあったと事後、リハビリ訓練を行っている頑者者の肺活量が増加したとの報告がある事実から、他動運動が肺活量の増加に関与している可能性が考えられる。発行障害を有している頑者者は、浅い呼吸による熟放散量の増加により、上熱対策をされている事は示されているため、肺活量の増加は呼吸環境への適応能力に好影響を及ぼすと言える。また、肺活量が増加することにより、以前よりも自力で病を切る事が増えたため、近年では筋・気呼吸調節（Fig. 5）を覆蓋する必要が無くなっていった。

4. まとめ
他動運動が循環器系に及ぼす影響を本例から判断する事は難しかったが、体原の日誌記録と筋肉量測定結果から、他動運動を継続的に行う事で筋肉量及び基礎代謝量を維持する可能性が伺えた。また他動運動が肺活量の増加に関与している可能性が伺える点から、他動運動がA氏の身体状態に好影響を及ぼしている事もあると思われる。今後もA氏への調査を継続するとともに、他動運動を行っている他の患者群に対してアンケート調査を実施し、他動運動が患者の身体状態に及ぼす影響について検討する予定である。

【参考文献】
3) 坂本他: 肥満改善運動者の体調を改善に及ぼす影響, 産業医学, 8(3):359-369, 1990
4) 坂本他: 肥満改善ガドリン治療成績, 医学臨床科学, 54(1):53-58, 2005
5) 高橋日医療ガドリン治療成績, 高橋日医療ガドリンライフサイエンス出版, 2006
6) 水口正人: 青木ヘクサ, 6A体, 病気障害者の生活習慣に NPO法人させかし基金
(神奈川リハビリテーション研究財団), 2006
7) 小林精华: 体育と食事の関係 - 適度な運動時間と健康の関係-, 1990
9) 坂本他: リハビリテーションにおける治療 (3) --筋肉活動に合併する体原調査と対策ー, 7巻3号, 393-397, 1975年4月

Table 2 The result of the amount measurement of muscles

<table>
<thead>
<tr>
<th>部位</th>
<th>新規測定値</th>
<th>新規測定値</th>
<th>新規測定値</th>
<th>新規測定値</th>
<th>健常者（同年代男性）</th>
<th>標準値</th>
</tr>
</thead>
<tbody>
<tr>
<td>胸部</td>
<td>0.94</td>
<td>0.93</td>
<td>0.94</td>
<td>1.26-1.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>背部</td>
<td>0.64</td>
<td>0.63</td>
<td>0.64</td>
<td>0.75-0.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>腹部</td>
<td>1.00</td>
<td>0.99</td>
<td>1.00</td>
<td>0.80-1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>筋肉(ラジウム%)</td>
<td>65.0</td>
<td>63.0</td>
<td>65.1</td>
<td>55-60</td>
<td>95-105</td>
<td></td>
</tr>
<tr>
<td>下肢</td>
<td>5.44</td>
<td>5.10</td>
<td>5.30</td>
<td>5.10-6.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>股部</td>
<td>4.8</td>
<td>4.67</td>
<td>4.85</td>
<td>4.50-5.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>腿部</td>
<td>10.6</td>
<td>10.5</td>
<td>10.6</td>
<td>8.0-9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>筋肉(ラジウム%)</td>
<td>65.0</td>
<td>65.0</td>
<td>64.2</td>
<td>55-60</td>
<td>95-105</td>
<td></td>
</tr>
<tr>
<td>体幹</td>
<td>3.80</td>
<td>3.71</td>
<td>3.80</td>
<td>3.50-4.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>筋肉(ラジウム%)</td>
<td>65.0</td>
<td>65.0</td>
<td>64.2</td>
<td>55-60</td>
<td>95-105</td>
<td></td>
</tr>
</tbody>
</table>

Table 3 The result of spirometry

<table>
<thead>
<tr>
<th>項目</th>
<th>原単位</th>
<th>実測値</th>
<th>健常者（同年代男性）</th>
<th>予測値</th>
</tr>
</thead>
<tbody>
<tr>
<td>肺活量(FVC)</td>
<td>L</td>
<td>2.32</td>
<td>2.87</td>
<td>56%</td>
</tr>
<tr>
<td>努力肺活量(FEV1)</td>
<td>L</td>
<td>2.12</td>
<td>2.77</td>
<td>56%</td>
</tr>
<tr>
<td>1秒率(FEV1)</td>
<td>L</td>
<td>1.65</td>
<td>2.09</td>
<td>53%</td>
</tr>
</tbody>
</table>

Fig 1 Transition of axilla temperature
Fig 2 Transition of systolic blood pressure
Fig 3 Transition of diastolic blood pressure
Fig 4 Transition of pulse rate
Fig 5 Transition of medicine utilization