H3-5

階段状水路における Non-aerated skimming flow のエネルギー特性 Energy characteristics of Non-aerated skimming flows in stepped channels 井上功平²,小川由生²,柴田貴成²,高橋真子²,土屋皓紀²,〇山元雄生²,高橋正行¹ Kouhei Inoue², Yuki ogawa², Takanori Shibata², Mako Takahashi², Hiroki Tsuchiya², *Yuki Yamamoto², Masayuki Takahashi¹

Abstract: The velocity profile and the boundary layer development of non-aerated skimming flows in stepped channels are shown, and the relative specific energy E/d_c (d_c =critical flow depth, E=specific energy) with the energy coefficient is determined along the stepped channels. The effect of the channel slope θ and the relative step height S/d_c (S=step height) on E/d_c is clarified on the basis of the boundary layer development.

1. まえがき

高速流のエネルギーを傾斜面上で減勢させる方法として階段状水路の利用は有効である¹⁾.

階段状水路において形成されるskimming flowの流況 は、底面から乱流境界層が発達し、ある程度の距離を 流下した断面で乱流境界層が水面に到達する.この断 面はcritical point (以下C.P.と略す)と呼ばれている.C.P. より下流側で乱れが十分に発達すると、水面から空気 が混入し始める.この断面をinception point(略I.P.)とい う.I.P.より下流側では空気混入不等流(gradually varied aerated flow)となり、さらにある程度の距離を流下する と擬似等流(quasi-uninfrom flow)となる.すなわち、不 等流区間はI.P.より上流側のnon-aerated flowとI.P.より 下流側のaerated flowに区分される. Aerated flowの水理 特性については、最近の研究によってかなり解明され てきた^{1)~3)}.

Non-aerated flow については,低落差の階段状洪水 吐で大流量時に生じ,この特性を知ることが水工設計 上必要となる.すなわち, non-aerated skimming flow の 水深,流速,および比エネルギーの大きさを知ること は重要である.

本研究では、水路傾斜角度 θ = 19°、30°,55°の階段状 水路を対象に不等流区間のnon-aerated skimming flow の比エネルギーの特性を示した.すなわち、乱流境界 層の発達に伴って相対比エネルギー E/d_c に対する水路 傾斜角度 θ および相対ステップ高 S/d_c の影響が大きくな ることを示した.

2. 実験

実験は、天端が広頂堰の階段状水路を用い、表-1の条件のもとで行われた.non-aerated flowの水深 d はポイン トゲージ、流速 u はピトー管を用いて測定された.I.P.の 空気混入率 C[C=空気の体積/(空気の体積+水の体積)] と流速 u は二点電極型ボイド率計を用いて測定された(測 定時間間隔 20µsec,測定時間 20sec).なお、水深、流速、 空気混入率、比エネルギーの評価断面をエッジ断面とし た(図-1 参照).

3. non-aerated flow の水理特性

non-aerated flow の乱流境界層内の流速 $u \ge u/U = f(y/\delta)$ の関係で整理した一例を図-2 に示す。ここに、 δ は乱流境界層厚さ、Uは乱流境界層外縁流速、xは傾斜始端からの流下距離である. なお、 δ は流速uの値が乱流境界層外縁流速 Uの 99%の値となる高さと定義されている. 図-2 から乱流境界層内の流速分布は 1/N乗

Table 1. Experimental Conditions

θ(°)	S(cm)	H dam (cm)	S/d c
19,30	0	36	0
	0.58	60	0.1
	1.5	36	0.2~0.3
	3	36	0.4~0.5
	6	36	0.8~0.9
55	0.3	60	0.034
	205	60	0.3

Figure. 3 Energy correction coefficient α : (a)*S*/*d_c*=0.2, (b) θ = 30°

則 $[u/U = (y/\delta)^{1/N}]$ で近似される. この図に示されるよう に、与えられた $\theta \ge S/d_c$ に対して相対流下距離 x/d_c に 関わらず N の値はほぼ一定値になっている. N の値に ついては、Takahashi and Ohtsu は擬似等流空気混入流 を対象に実験式[(1)式]を提案²⁾している.

$$N = 14\theta^{-0.65} \frac{S}{d_c} \left(\frac{100}{\theta} \frac{S}{d_c} - 1 \right) - 0.041\theta + 6.27 \quad (\theta \text{ in deg.}) (1)$$

1:日大理工・教員・土木 2:Civil Engineering, CST., Nihon-U. 2:日大理工・学部・土木 1:Civil Engineering, CST., Nihon-U.

Figure 4. Relative specific energy E/d_c (a) $\theta = 30^{\circ}$, (b) $S/d_c = 0.3$

(1)式から *N*の値を求め, 1/*N* 乗則[$u/U = (y/\delta)^{1/N}$]を用い て得られた u/Uを図-2の実線に示す.図に示されるよ うに,実線と実測値はほぼ一致している.すなわち, 本実験範囲(表-1)において *N*の値は aerated flow お よび non-aerated flow に関わらず(1)式によって定まる ことが示された。

評価断面をエッジ断面(図-1 参照)と定義すると non-aerated flow の比エネルギーE は次式で示される.

$$E = d\cos\theta + \alpha \frac{V^2}{2g} \tag{2}$$

ここに, V は断面平均流速(V= q /d), α はエネルギー補 正係数であり(3)式によって求められる.

$$\alpha = \int_0^d \left(\frac{u}{V}\right)^3 \frac{dA}{A} \tag{3}$$

さらに, αは 1/N 乗則と(3)式より次式で示される.

$$\alpha = \frac{1}{d} \left\{ \int_0^{\delta} \left(\frac{u}{V} \right)^3 dy + \int_{\delta}^{d} \left(\frac{U}{V} \right)^3 dy \right\} = \frac{\left(1 - \frac{3}{N+3} \frac{\delta}{d} \right)}{\left(1 - \frac{1}{N+1} \frac{\delta}{d} \right)^3}$$
(4)

また,(1)式から求めた N の値を(4)式に代入すること により,図-3の各線が得られる.図に示されるように, 与えられた θ と S/d_c に対して δ/d が増加すると α も増 加する.また,図-3(a)に示されるように,与えられた S/d_c と δ/d に対して θ が大きくなると α は大きくなる. さらに,図-3(b)に示されるように与えられた θ と δ/d に対して S/d_c が大きくなると α は小さくなる.

non-aerated flowの相対比エネルギー E/d_c は(5)式で示される.

$$\left(\frac{E}{d_c}\right) = \frac{d}{d_c}\cos\theta + \frac{\alpha}{2}\left(\frac{d_c}{d}\right)^2 \tag{5}$$

クレスト天端から評価断面までの鉛直距離を H_s とし (図-1参照),各 H_s における $d \ge \delta$ の測定値を用いて(1), (4),(5)式から求まる $E/d_c \ge [E/d_c=f(\theta, S/d_c, H_s/d_c)]$ の関 係で整理したものを図-4に示す.なお,図-4中の破線 はポテンシャル流とした場合の相対比エネルギー (E/d_c)non-lossを示す.図-4に示されるように,与えられた $\theta \ge S/d_c$ に対して H_s/d_c の増加に伴い相対エネルギー E/d_c は増加する.

図-4(a)に示されるように、 $\delta/d < 0.5$ では与えられた θ と H_s/d_c に対して、 S/d_c の E/d_c への影響は小さく、 $(E/d_c)_{non-loss}$ の値と実験値は近い値を示している. 0.5< $\delta/d < 0.7$ では $(E/d_c)_{non-loss}$ の値よりも E/d_c は小さい値を示し, E/d_c に対して S/d_c の影響がある程度効いてくる. さらに, $\delta/d > 0.7$ では E/d_c に対する S/d_c の影響が大きくなる.なお,図-4 における I.P.の空気混入流の比エネルギー E_i は Takahashi and Ohtsu の方法²⁾を用いて求められた.

図-4(b)に相対比エネルギー E/d_c の流下方向変化 (H_s/d_c)に対する水路傾斜角度 θ の影響を示す.図に示 されるように乱流境界層が発達し $\delta/d>0.7$ になると, 与えられた $H_s/d_c \geq S/d_c$ に対して θ が小さいほど E/d_c は小さくなる.これは、 θ を小さくすると相対流下距離 x/d_c が増加するためエネルギー損失が大きくなり、 E/d_c は小さくなったものと考えられる.また、 θ が大きくな ると流れがステップ水平面に衝突しにくくなり、流水 抵抗が小さく、 E/d_c が大きくなったためと考えられる. 4. **まとめ**

水路傾斜角度 θ = 19°, 30°, 55°の non-aerated skimming flow を対象に比エネルギーEの大きさを検討した結果を以下に示す.

 non-aerated flow の乱流境界層内の流速分布は 1/ N 乗則で近似され、Nの値は擬似等流の aerated flow の N の値と等しく、(1)式によって求められる.

②. 乱流境界層発達中のエネルギー補正係数aは(4)式 によって求められる. すなわち, 与えられた $N \ge \delta/d$ に対して乱流境界層発達中のエネルギー補正係数aが算定可能となった.

③. 図-4 から $\delta/d < 0.5$ では相対比エネルギー E/d_c に対 する $\theta \geq S/d_c$ の影響は小さい.また、ポテンシャル流と して求めた(E/d_c)non-lossの値と実験値は近い値を示す. 方、 $\delta/d > 0.7$ では E/d_c に対する $\theta \geq S/d_c$ の影響が大きく なる.すなわち、乱流境界層厚さ δ/d の発達に伴って相 対比エネルギー E/d_c に対する水路傾斜角度 θ および相 対ステップ高 S/d_c の影響が大きくなることが明らかに された.

参考文献

1) Ohtsu, I., Yasuda, Y., and Takahashi, M.: "Flow characteristics of skimming flows in stepped channels.", *J. Hydr. Eng.*, 130(9), 860-869, 2004.

2)Takahashi, M., Ohtsu, I. : "Aerated flow characteristics of skimming flow over stepped chutes.", *J. Hydr. Res.*, 50(4), 427-434, 2012.

3)高橋,大津:"階段状水路における空気混入不等流解 析",土木学会論文集 B1(水工学),69(4),I_913-I_918, 2013.