中間層免震構造物における地震時応力に関する研究 その2 地震時応力を考慮した設計手法の提案

A Study on Stresses during an Earthquake of Structure with Mid-story Isolation System

Part2 Proposed Design Method considering the Earthquake Stress

○川口剣斗³, 古橋剛¹, 登坂遼太郎², 岡部丈³

*Kento Kawaguti³, Takeshi Furuhashi¹, Ryotaro Tosaka², Jo Okabe³

In this paper, we reveal that the earthquake stress that exceeds the design stress occurs. And we propose the design method considering the earthquake stress.

<u>2.1 はじめに</u>

前報その1では,様々な中間層免震モデルにおいて, 設計応力を大きく超える地震時応力が生じる部材が存 在し,現行の設計が危険側となり得ることを示した.

そこで本報その2では、危険側となる原因を明らか にし、地震時応力を考慮した設計手法の提案を行う.

<u>2.2 設計応力を超える地震時応力が生じる原因</u>

2.2.1 抽出モデル

抽出モデルは、1.0s model (Figure 1-1, Table 1-1~1-2) とし、免震層諸元を免震設置層 5 層目、免震塑性周期 6s, バイリニア係数 0.05, 降伏せん断力係数 0.03 とし た中間層免震モデルを用いる. なお、部材減衰及び応 力を算出する際のフレームモデルは前報その 1 と同様 とする. また、入力地震動は、El Centro 1940 NS を 50cm/s に基準化した地震動のみによる検討とする.

2.2.2 抽出モデルにおける地震時応力の検討結果

抽出モデルの設計応力と最大地震時応力を Table2-1 に示す.この結果から免震層の直上・直下の柱が危険 側の設計となることが分かる.そこで,これらの部材 における各応力の地震力応力及び P-Δ 応力を Table2-2 に示す.以下,各応力を下記のように呼称する.

・設計応力の地震力応力	\rightarrow	設計地震力応力
・設計応力のP-∆応力	\rightarrow	設計 P-Δ 応力
・地震時応力の地震力応力	\rightarrow	地震時地震力応力
・地震時応力の P- Δ 応力	\rightarrow	地震時 P- Δ 応力

まず,直上柱頭・直下柱脚の地震力応力(Table2-2 a) d))に着目する.最大層せん断力を超えるせん断力は 発生しないため,設計地震力応力を超える地震時地震 力応力が生じる原因は,反曲点高さのばらつき_{原因(A)}が 考えられる.また,直上柱頭・柱脚の P-Δ 応力(Table2-2 a) b))に着目すると,設計-Δ 応力は地震時 P-Δ 応力と 比較して値は大きいが,設計地震力応力と符号が異な り足し合わせた際に設計応力は大きく低減される. したがって、単純な応力の足し合わせは、設計 P-Δ 応力により設計応力を大きく減らし危険側の設計とな る場合がある_{原因(B)}. さらに、直下柱頭・直下柱脚の P-Δ 応力(Table2-2 c) d))に着目すると、設計 P-Δ 応力は設 計地震力応力と異符号なのに対して、地震時 P-Δ 応力 は地震時地震力応力と同符号であり、地震時応力が増 大する場合がある_{原因(C)}. 以上の原因を以下にまとめる.

- (A) 反曲点高さがばらつくことによって設計地震力 応力を超える地震時地震力応力が生じる.
- (B) 地震時 P-Δ 応力が小さい場合が存在するが,現 行の設計では設計地震力応力と設計 P-Δ 応力の 符号が異なり,設計応力が大きく低減する.
- (C) 地震時地震力応力と地震時 P-Δ 応力が同符号で、 加算となる場合があるが、現行の設計では設計 地震力応力と設計 P-Δ 応力の符号が異なり、設 計応力が低減する.

model									
	設計	†応力[kN	[•m]	最大地震時応力[kN·m]			地震時応力/設計応力		
FL	4	主	3 7 5	4	主	አው	ł	主	371
	柱頭	柱脚	*	柱頭	柱脚	×	柱頭	柱脚	*
8	754	-349	-377	753	351	377	1.00	1.00	1.00
7	1013	-802	-681	1010	812	680	1.00	1.01	1.00
6	876	-1009	-839	868	980	830	0.99	0.97	0.99
5	468	-497	-739	576	801	743	1.23	1.61	1.01
免震層	-	-	-717	-	-	630	-	-	0.88
4	4247	-1427	-2592	4786	1901	2176	1.13	1.33	0.84
3	7987	-4483	-4707	7964	4496	4626	1.00	1.00	0.98
2	10188	-8178	-7335	10226	8159	7280	1.00	1.00	0.99
1	9508	-12780	-8843	9514	12774	8832	1.00	1.00	1.00
В	-	-	-6390	-	-	6387	-	-	1.00

Table2-1 Maximum earthquake stress and design stress of extraction

Table2-2 P-∆ stress and seismic force maximum stress of earthquake stress and design stress a)直上
井頭
い直上
辻脚

	a)直工作	主項		0)直上柱脚				
応力の種類	設計応力	地震時応力	倍率	応力の種類	設計応力	地震時応力	倍率	
	[kN•m]	[kN•m]			[kN•m]	[kN•m]		
地震力応力	581	-666	1.15	地震力応力	-873	-876	1.00	
P-∆応力	-113	90	0.79	P-∆応力	376	75	0.20	
合計値	468	-576	1.23	合計値	-497	-801	1.61	
c)直下柱頭			d)直下柱脚					
応力の種類	設計応力	地震時応力	倍率	位玄	応力の種類	設計応力	地震時応力	倍率
	[kN•m]	[kN•m]		ルンノンノ主人	[kN•m]	[kN•m]	10+	
地震力応力	4624	4584	0.99	地震力応力	-1540	1880	1.22	
P-∆応力	-376	202	0.54	P-∆応力	113	21	0.18	
合計値	4247	4786	1.13	合計値	-1427	1901	1.33	

1:日大理工・教員・建築 2:織本構造設計 3:日大理工・学部・建築

<u>2.3 地震時応力を考慮した設計手法の提案</u>

2.3.1 設計地震力応力の割増率の検討概要

前節で明らかにした原因を基に地震時応力を考慮し た設計手法を提案する.

原因(B)・(C)は,設計地震力応力と設計 P-Δ 応力の 絶対値を足す方法が提案でき,原因(A)は,設計地震力 応力に割増率を乗じる方法が提案できる.ここで,前 報で示した全中間層免震モデルの設計地震力応力に対 する地震時地震力応力の最大値(以降最大地震時地震 力応力)の倍率を算出することで,設計地震力応力に 乗じる必要がある割増率の検討を行う.

2.3.2 設計地震力応力の割増率の検討結果

中間層免震モデルにおける設計地震力応力に対する 最大地震時地震力応力の倍率を Figure2-1 に示す.

まず,直上柱頭・直下柱脚に着目すると,モデル周 期が長いほど倍率が上昇し,他と比較して倍率が大き くなっている.次に,直上柱脚・直下柱頭に着目する と,モデル周期に依存せず,倍率はやや1を超えた値 となる.また,梁については倍率が1以内に収まるた め,割増率を乗じる必要がないことが分かる.

以上より,全ての倍率を満足するように設定した割 増率の式((2-1)~(2-4)式)が提案できる.

以上に示した提案設計手法は、「記の通りとなる.
I免震層の直上・直下の柱の設計地震力応力に(2-1)
式~(2-4)式より算出される割増率を乗じる.
Ⅱ設計地震力応力と設計 P-Δ 応力をそれぞれ絶対値
をとって足し合わせる.

$\alpha_1 = 1.1 + 0.2T$	(2-1)	$a_2 = 1.1$	(2-2)
$\alpha_{_{3}} = 1.1$	(2-3)	$\alpha_{_4}=1.3+0.2T$	(2-4)
1:直上柱頭の割増率,	α2:直上柱脚の割増率,	α3:直下柱頭の割増率	

a4: 直下柱脚の割増率,T:建物の周期[s] (Table1-1に示す基本モデルの1次固有周期)

<u>2.4 提案設計手法の有効性の確認</u>

前報その1で示した全モデル・全入力地震動に対し て,前節で示した提案設計を行い,提案設計応力に対 する最大地震時応力の倍率の結果を Figure2-2 に示す.

この結果より,全ての中間層免震モデルにおいて提 案設計応力に対する最大地震時応力の倍率が1以内に 収まっており安全側の設計となっていることが分かる. したがって,提案設計手法は中間層免震構造物の地震 時応力を考慮した有効な設計手法であると言える.

<u>2.5 まとめ</u>

本報その2では、現行の中間層免震構造物の設計が 応力の観点で危険側となる原因を明らかにした.さら に、それを基に地震時応力を考慮した設計手法を提案 し、その有効性を確認した.

<u>2.6 参考文献</u>

- [1] 稀代康平,石丸辰治,古橋剛ら:中間層免震構造物の逆位相問題に関する研究,日本建築学会大会学術講演梗概集,459-464,2013.8
- [2] 日本建築学会関東支部:免震・制震構造の設計 学 びやすい構造設計, 2007.1
- [3] 藤井大地: Excel で解く3次元建築構造解析,丸善 出版,2005.3