免震層にトグル機構を用いた構造システムに関する基礎的研究
大振幅地震動に対応できるHybrid免・制震システム
A fundamental study on the structure system using a toggle mechanism on the base isolation layer
Hybrid seismic isolation, vibration control system that can cope with a large earthquake

○高林正和2, 古橋剛1
*Masakazu Takabayashi2, Takeshi Furuhashi1

This research proposes a system of building structures to create a layer that utilizes a variety of seismic isolation system, toggle, viscous dampers, and dynamic mass damper to reduce the input of ground motion. In addition, for the amplification factor β, we show the application effect of the system optimal design method.

1. はじめに
2011年3月11日に東日本大震災を経験し, 近い将来おこりうる直下型地震の指向性パルス地震動や東海・東南海・南海の3連動地震の長周期地震動に対応するため, 建築物の地震に対する性能いわゆる対震性1)の向上が大きな課題となっている。

そこで本研究では, このような地震動に対応するため, Figure-1に示すように, 免震装置, トグル, 粘性ダンパー, ダイナミック・マス(以下, D.M.)ダンパーなどの組合せを利用して, 地震動の入力を低減する層(以下, 入力低減効果層)を作る建築構造物のシステムを提案する。以降に増幅倍率βについて, 最適設計法, 検討モデルに対してのシステムの適用効果を非線形時刻歴応答解析で示す。

また, 入力低減効果層に用いるトグル機構は, 複数設置することを考え, Figure-2に示すようにモデルを用いることとする。

2. 入力低減効果層の増幅倍率
ここでは, 入力低減効果層に用いるトグル機構の増幅倍率βの定式化及び変位に伴う増幅倍率βを示す。Figure-3に示すようにそれぞれ座標を設定すると, 各方向の増幅倍率βは, (1), (2)式のように表すことができる。また, (1), (2)式中のa, b, c, x1, x2, y1, y2の定義は以下に示す通りである。
3. D.M.同調システムを用いた最適設計

本報の入力低減層に用いる制震設計においては、石丸らが提案したD.M同調システムの簡易設計法[4]に基づいて設計を行う。

トグル機構のD.M同調システムでは、付加するD.M量が100[kN/m]、減衰係数が40倍に増幅させる効果がある。そのため、D.M同調システムを設計する際に用いられるD.M量100[kN/m]、c4[kN/s・m]には、それぞれβ2倍に増幅された値を用いる。

4. 非線形時刻歴応答解析

4.1. 検討モデル概要

Figure-5にモデル図を示す。Table-1には各層の質量と剛性を、Table-2には免震層の諸元を示す。また、部材減衰は、上部構造に対し剛性比例型で1次モードに1％付加している。

Table-1 Assumed building outline

<table>
<thead>
<tr>
<th>層</th>
<th>1層あたりの質量 [ton]</th>
<th>1層あたりの剛性 [kN/m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1200</td>
<td>580000</td>
</tr>
</tbody>
</table>

Table-2 Base isolation layer specifications

<table>
<thead>
<tr>
<th>層</th>
<th>1層構造質量 [ton]</th>
<th>降伏せん断力 [kN]</th>
<th>一次剛性 [kN/m]</th>
<th>二次剛性 [kN/m]</th>
<th>バイアス係数</th>
<th>1次剛性 [kN/m]</th>
<th>2次剛性 [kN/m]</th>
<th>傾性変位 [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6750</td>
<td>198.45</td>
<td>1665.5</td>
<td>0.1</td>
<td>16655.0</td>
<td>0.012</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure-6に柱番号及びトグル機構の配置パターンを示す。比較のため、トグル機関の配置は、2パターンを行い、非制震時と比べるものとする。Table-3にD.M同調システムの諸元を示す。なお、表中の括弧内の値は棒子倍率(β=2.5)を考慮した際の値である。

Table-3 Damper amount

<table>
<thead>
<tr>
<th>条件におけるD.M.量 [ton]</th>
<th>減衰係数 [kN・s/m]</th>
<th>同調時の値</th>
<th>βを考慮した値</th>
</tr>
</thead>
<tbody>
<tr>
<td>1150</td>
<td>8700</td>
<td>(184)</td>
<td>(1392)</td>
</tr>
</tbody>
</table>

4.2. 非線形時刻歴応答解析

入力地震動は、NS方向を50[cm/s]に基準化したEl Centro 1940を使用する。また、検討モデルに対し、X方向にはEW成分を、Y方向にはNS成分を入力する。

Figure-7にModel2の応答解結果を、Figure-8にModel3の応答解結果を示す。相対変位において、大幅な低減ができているが、絶対加速度において、Model2及びModel3において、上部構造が大きく振られていることが分かる。

5. まとめ

本研究では、免震装置やダンパーなどの組合せを利用して入力低減層を作る構造システムを提案し、システムの適用効果を確認した。

今後、上部構造に対して部分モード制御システムを適用した場合や直動転がり支承を用いた場合等の検討を進める予定である。

【参考文献】

[1] 石丸辰治、「応答性能に基づく「対震設計」入門」彰国社、2004.3

[2] 石丸辰治、秦一平、古橋剛ら：「ツイントグル機構によるD.M.同調システムに関する研究」、日本建築学会大会学術講演会論文集、2010.9

[3] 石丸辰治、秦一平、古橋剛、公塚正行ら：「検査結果式を用いるD.M.同調システムの簡易設計法」、日本建築学会大会学術講演会論文集、2010.9