## 圧縮軸力下における間柱型せん断パネルダンパーの履歴性状に関する実験的検討 (その1)静的載荷試験概要および実験経過

The experimental study on hysteresis characteristics of the stud-type shear panel damper under compressive axial force Part1:Outline of static loading test and the course of the test

> ○安藤知志<sup>1</sup>, 須藤勝哉<sup>2</sup>, 石鍋雄一郎<sup>3</sup>, 萩原伸彦<sup>4</sup> \* Kazushi Ando<sup>1</sup>, Katsuya Sudo<sup>2</sup>, Yuichiro Ishinabe<sup>3</sup>, Nobuhiko Hagiwara<sup>4</sup>

Abstract: When stud-type shear panel damper using low-yield point steel is installed in the RC buildings, there is a problem derived from the compressive axial force by creep deformation and drying shrinkage. In addition, the damper to be installed through the stub to the frame that restrains vertical deformation along with shear deformation fluctuating axial force applied to the damper. In this paper, the effect of compressive axial force on the hysteresis characteristic of the damper is examined by experimental studies.

## 1.はじめに

RC 造建物に設置される低降伏点鋼を用いた間柱型 せん断パネルダンパーは、スパン中央に支持部材を介 し連層に配置されるため Fig.1 に示すように建物施工 時の施工時荷重や、竣工後における躯体の長期的なク リープ変形や乾燥収縮によりダンパーに圧縮軸力が作 用する問題がある<sup>1)</sup>.しかし、圧縮軸力が鋼材ダンパ ーの履歴性状に与える影響は十分に明らかにされてい ない.また、RC スタブを介しフレームに取り付けられ る鋼材ダンパーは、鉛直変位が拘束された状態にある と考えられる.鉛直変位が拘束されたダンパーは、せ ん断変形の増大に伴い、拘束の程度に応じ、ダンパー 内で軸力変動が生じ、ダンパーの性状およびダンパー が取り付く周辺部材へ影響を与えることが懸念される.

そこで、本報告では間柱型せん断パネルダンパーに 作用する圧縮軸力および鉛直変位拘束条件の違いがダ ンパーの履歴性状に与える影響を実験により検討する.



## 2.試験体概要

試験体一覧を Table.1 に, 試験体形状を Fig.2 に示す. 試験体は実大のダンパー<sup>1)</sup>を 1/2 に縮小したものである. 実験パラメータはウェブ幅厚比, 初期軸力比 N/N,およ び鉛直変位拘束の有無である. 試験体はウェブに低降 伏点鋼である LY225, フランジは SN490B, ベースプ レートは SN490C を用いて製作した. 使用鋼材の機械 的性質を Table.2 に示す.

軸力比 *N/N*,は Eq.(1)に示すように,ウェブ使用鋼材の降伏応力度 "*σ*,にダンパー全断面積 *A*<sub>d</sub>を乗じた,ウェブが降伏に至る軸力に対する圧縮軸力比である.

$$N/N_{v} = N/(_{w}\sigma_{v} \cdot A_{d})$$
(1)

鉛直変位拘束に関して,実際の間柱型せん断パネル ダンパーの鉛直変位拘束は完全な鉛直変位拘束と非拘 束の中間にあると考えられるが,本実験では鉛直変位 の拘束の程度を完全拘束に近づけた場合と非拘束の場 合でそれぞれ行い,鉛直変位拘束の影響を検討する. 3.載荷方法

加力装置図を Fig.3 に示す.実験は平行加力載荷試験 装置を用いて実施した.試験体への載荷は,軸力を作 用させた状態で静的にせん断力を作用させる.せん断 力の載荷スケジュールを Fig.4 に示す.

鉛直変位拘束のケースにおける載荷方法は,鉛直ジ ャッキにより所定の初期圧縮軸力を載荷後,その軸力 値による鉛直変位を保持した状態で水平ジャッキによ りせん断力を作用させる.鉛直変位の制御方法は,目 標の軸力比で載荷した時の試験体ベースプレート間の 鉛直変位量を初期値とし,初期値 ±0.1mm に収まるよ うに,鉛直ジャッキにより作用させる軸力を段階的に 操作するというものである.そのため,ダンパーのせ ん断変形に伴い作用軸力が変化する.鉛直変位非拘束 のケースでは,同様に軸力を載荷後,その軸力値を保 持した状態でせん断力を作用させる.

## 4.実験経過

載荷終了時の試験体状況を Fig.5 に示す. 鉛直変位非

1:日大理工・学部・建築 2:日大理工・院(前)・建築 3:日大理工・教員・建築 4:東亜建設工業



交差する点において、ウェブに亀裂が生じ、載荷スケ ジュールの進展に伴い、亀裂が拡大した.

鉛直変位を拘束したケースでは初期軸力に関わらず, 座屈後にピンチング現象を生じ,座屈波形が交差する 点において亀裂を生じた.

鉛直変位非拘束で軸力が作用している Free60-2/3, Free45-1/2 および Free45-2/3 に関しては,載荷中に耐力 が急激に低下し,鉛直変位が急激に進展したので設定 した載荷スケジュールの途中で載荷を終了している. 載荷時の挙動に関して, Free60-2/3, Free45-1/2 はウェ

【参考文献】 1)川幡他:間控型低降伏点鋼ダンパー付RC造の施工過程における軸ひずみの実測と評価(その1)高層住宅の軸ひずみの計測結果,日本建築学会大会学術講演梗概集, pp97-98, 2012.9

した. なお, 載荷終了時にウェブに亀裂は生じていな

い. Free45-2/3 に関しては, 座屈後にピンチング現象を 生じた. その後, 左フランジはウェブ側, 右フランジ

が外側に変形し、鉛直変位が急激に進行した.また、

載荷終了時,ウェブに亀裂は生じなかった.

実験結果および考察は(その2)に示す.

5.まとめ