B-46

折返しブレースの構造特性に関する実験的研究 (その7 実適用部材の加力実験)

Experimental Study on Structural Characteristics of Twice Turn Braces

Part7. Experiments conducted member

〇村井克綺 1 ,新井佑一郎 1 ,波田雅也 1 ,竹内健一 1 ,北嶋圭二 2 ,中西三和 2 ,安達洋 2 *Katsuki Murai¹, Yuichiro Arai¹, Masaya Hada¹, Kenichi Takeuchi¹, Keiji Kitajima², Mitsukazu Nakanishi², Hiromi Adachi²

Abstract: In this paper described full-scale test of Twice Turn Braces that were used in the building.

1. はじめに

本報(その7)は、前報(その6)で示した実建物に用いた 折返しブレースの加力実験に関するものである. 本実験 の目的は、実際の建物に適用した折返しブレースが、設 計で想定した構造性能を有するか確認することである.

2. 実験概要

BCR295

□-175×175×6.0

3,932

2,843

295

して算定している ※3 鋼製スペ

49

1,160

2.1 試験体の概要 実建物の骨組み写真を Photo1 に、 骨組詳細図を Fig.1 に,加力装置図を Fig.2 に示す.また, 試験体形状を Fig.3 に、試験体の諸元と耐力を Table1 に示 す. 折返しブレース試験体は、Photo1 に示す8階建て鉄骨 造事務所ビルの5階①, ④通りで使用された部材と同一で ある. 芯材を H 形鋼, 中鋼管と外鋼管を角形鋼管とし, 短期許容軸力(701kN)は芯材の断面で決定している. また,

短期許容軸力に対する全体座屈の安全率を 1.48, 高力ボル ト摩擦接合部の短期許容耐力(すべり耐力)の安全率を 1.58 確保している. 本実験では、実際の架構に組込まれた 状態における構造性能を確認するため、階高(3.64m)、スパ ン(3.2m),取付け角度および取付部材(ガセットプレート) は実建物を完全に再現し、下端ピンの加力柱を介して、柱頂 部に取付けたアクチュエータにより軸力を作用させた.

2.2 加力計画 加力サイクルを Fig.4 に示す. 折返しブ レースは、軸降伏変位の増大効果を有する種別 BA のブレ ース材として評定を取得しており、設計時に想定した構造 性能として, i)軸剛性が前報(その6)の(1)式で算定でき る, ii) 短期許容応力度設計において圧縮耐力が引張耐力 と同じ値にできる, iii)保有耐力算定時(R=1/100)を超える

1:青木あすなろ建設株式会社 Asunaro Aoki Constrution Co., 2:日大理工・教員・海建 Prof., Nihon Univ.

970

210

62,034

大変形下でも安定した挙動を示すことなどが挙げられる. これらの構造性能を確認するため、加力は正負交番とし、 はじめに短期許容軸力まで加力した後、層間変形角 R=± 1/240, $\pm 1/160$, $\pm 1/120$ rad 相当の軸変位で各 2 サイクル, R=±1/96rad 相当の軸変位で4サイクル, ±1/80rad 相当の 軸変位で 14 サイクルの加力を行った. また, R=±1/96rad の4サイクルにおいては、面外強制変形による影響³⁾を確 認するため, 面外変形無しの加力(1,4 サイクル目)の間に, R=1/100rad 相当の面外強制変形($\delta=36.4$ mm)を与えた状態 での加力を2サイクル(2.3 サイクル目)行った. なお, 計 測項目および計測方法は、既報(その4)と同じとした.

3. 実験結果

3.1 軸力—軸変位関係 軸力-軸変位関係(履歴曲 線) をFig.5に示す. Fig.5(a) は全サイクルの履歴曲線であり、 Fig.5 (b) はR=±1/96rad加力時の面外変形有り・無しの4サ イクルを抽出したものである. また, Fig.5(a) 中には, 折 返しブレースの設計値(赤線)も合わせて示している.まず Fig.5(a)より, 折返しブレース軸剛性の実験値が, 設計値と ほぼ一致していること, 圧縮加力時も座屈せず, 引張耐力 と同等の圧縮耐力を示していること、R=1/80radの大変形 を多数回繰り返しても安定した紡錘型の履歴形状を示し ていることから、2章で述べた構造性能 i)~iii)を十分に 満足していることが確認できる. またFig.5(b)より,強制 変形有り(赤線)と強制変形無し(青線, 緑線)の履歴性状に

芯材単体の軸剛性(計算値)

(-1/100)

-0.5

(-1/200)

-1.5

1500

1000

500

-500

-1000

-1500

-40

-30

-20

-10

軸変位(mm)

(a)全サイクル

型力(kN) 0

-- 履歴曲線 --- 折返しプレース(設計値) ○ 短期許容応力時 ●0.2%オフセット荷重 × 降伏ひずみ到達時

0.5 (1/200)

10

層間変形角(×10⁻²rad)

▼ 最大荷重

30

(1/100)

1.5

有意差は見られず、R=1/100rad相当の面外変形を与えた状 熊でも、設計で想定した通りの構造性能が発揮されている ことが確認できる. なお, 最終的には, R=±1/80rad 14サ イクル目の圧縮ピーク時において、短期許容軸力の約1.7 倍まで荷重上昇したところで外鋼管側の高力ボルト摩擦 接合部にすべりが発生し、実験を終了した.

3.2 ひずみ分布 芯材降伏時および最大耐力時におけ る各鋼材のひずみ度および塑性率をTable2に示す.表より, 想定通り芯材が軸降伏し、その後、芯材が大きく塑性化し ても、中、外鋼管は弾性を保持していることがわかる.

3.3 各鋼材の損傷状態 加力終了後の試験体内部(芯 材)の損傷状態をPhoto2に示す. Photo2より, 既往実験(そ の5)と同様、カバープレート補強部と無補強部の境界で、 芯材に局部座屈が発生していることが確認できる.しかし, 本実験では、局部座屈による耐力低下は見られなかった. なお、中、外鋼管は、外鋼管の内側にエンドプレートとの 接触痕が見られものの、概ね健全な状態を保持していた.

4. まとめ

以上、実建物に用いた折返しブレースの加力実験を行い、 設計で想定した通りの構造性能を有することを確認した.

0【謝辞】本実験では、中西・北嶋研究室の松田壮太君と森永晃平君が実験に参加し てくれました. ここに謝意を表す.

【参考文献】1) 波田ほか: 折返しブレースの構造特性に関する実験的研究(その1 ~6), AIJ 大会, C-1, pp.747-750, 2012.9, pp.1287-1292, 2013.8

2) 波田ほか: 折返し部材のブレース材適用の有効性に関する検討(その1~2), AIJ

大会, C-1, pp.975-976, 2010.9, pp.861-862, 2011.8 3) 竹内ほか: 座屈拘束ブ レースの安定条件、座屈 に関する設計上の諸問題. AIJ大会パネルディスカ ッション資料, pp.56-67, 2011.8

rable2 Strain and ductility factor				
	芯材降伏ひずみ到達時		最大耐力時	
	ひずみ度 (%) _{※1}	塑性率※2	ひずみ度 (%)	塑性率
芯材	0.13	0.99	1.25	9.25
中鋼管	0.08	0.39	0.11	0.55
外鋼管	0.12	0.68	0.14	0.82
※1:各鋼材のひずみ度は、部材中央における計測値				

※2:塑件率は、ひずみ度を材料試験から得た降伏ひずみで除して复定

Table? Strain and ductility factor

Photo2 Specimens after dismantling

Fig.5 Axial force- Axial displacement(hysteresis curve)

40