杭の鉛直先端支持力に関する基礎的研究 埋込杭工法における閉端杭と開端杭の模型実験 Fundamental Study on Vertical Pile-end Bearing Capacity of Pile. Model Experiments for Closed and Open End Pile Using Bored Precast Method.

○宮崎世納¹, 佐藤秀人², 鹿糠嘉津博³ *Sena Miyazaki¹, Hedeto Sato², Katuhiro Kanuka³

The objective of this study is to make clear the characteristics of vertical bearing capacity of a pile-end, which installed by the bored precast method. The authors performed small scaled model tests of axial compressive loading test. We discussed the behavior of the resistance of the pile-end in order to put to practical use of the structural design and construction method.

1. はじめに

鋼管杭や遠心力成型既成コンクリート杭の先端部は 開放状態となるため,埋込杭工法を採用する場合には, 開端杭であることを十分考慮して根固め部の施工を確 実に行うことが必要となる.しかし,地盤強度が中位 の地盤や粘性土層に定着させる場合には,十分な閉塞 効果が得られずに,想定通りの先端支持力が発現しな い可能性が考えられる.本研究では,開端杭を埋込杭 工法で使用する場合の適正な施工方法や合理的な先端 形状を検討し,その結果を設計・施工に反映させるこ とを目的とする.本報告では,先端支持力の基本的性 状を把握するために実施した,閉端杭と開端杭の模型 実験(静的押込み試験)と先端支持力が向上するのに 有効な先端形状を検討するために実施した,模型実験

(静的押込み試験) について述べる.

2. 試験方法

2.1 試験杭

周面摩擦力を極力排除するために、表面をテフロン 加工(フッ素樹脂加工)した電縫鋼管を試験杭として 用いた(直径 D=48.6 mm,肉厚 t=3.2 mm,長さ L=600 mm).杭先端形状は閉端状態としたものと完全開端状 態としたものを基本形状とし、これに加えて開端杭の 閉塞効果による影響を検討するために、内部にドーナ ツ状の支圧円盤を設けたものを使用した(円盤内径 ϕ =15,25,30 mm,図1).

2.2 試験土槽および模型地盤

試験土槽は,直径 650 mm,深さ 700 mm の鋼製円形 土槽を用いた.模型地盤は,気乾状態の珪砂 5 号(飯 豊産)を使用し,2 重分散網を用いた多孔式空中落下 法¹⁾によって作成した(落下口径:9 mm,落口間隔 100 mm,落下口~分散網距離:300 mm).本模型地盤の諸 性質を表1に,標準貫入試験一打当たりの貫入量から 逆算して求めた換算N値分布を図2に示す.図2より, 本試験の杭先端N値はN=2と判断した.

2.3 模型地盤の作成

杭周辺の地盤を埋込杭工法に準じた状態とするため

- に,以下の方法によって模型実験を作成した.
- ① 杭先端位置+5mm まで模型地盤を作成する.
- ② 模型杭を鉛直に置き,軽打によって 5mm 打込む.
- ③ 地表面まで模型地盤を作成する.

なお,内部支圧板を有するものは,上記②の工程で, 支圧板位置まで杭を打ち込んだ.

1. 日大理工・院・海建 2. 日大短大・教員・建築 3. 有限会社カヌカデザイン・代表取締役

2.4 試験方法および計測項目

載荷は,変位制御式電動載荷装置(最大載荷能力20 kN)を用いて,1mm/minの速度による静的押込み試験 を行い,荷重~変位関係を計測した(図3).また,載 荷中の砂槽底部における鉛直土圧の変化を計測した.

計測項目は、杭頭荷重、杭頭変位および地中鉛直土 圧とし、それぞれ、ロードセル、変位計(2点)、地中 土圧計(3箇所)によって計測した(図3).ここで、 杭周面部はテフロン加工を施してあることと、杭の根 入れ長が H=5D と比較的小さいことから、杭周面摩擦 はほぼゼロの状態にあるものとみなし、杭頭荷重=杭 先端荷重、杭頭変位=杭先端変位として実験結果を整 理した.

3. 実験結果および考察

図 4 は、閉端杭、開端杭、開端杭(支圧円盤 内径 ϕ =15mm, 25mm, 30mm)の杭先端荷重~杭先端変位(P- δ 曲線) 、図 5 は、砂槽底面鉛直土圧~杭先端変位関 係 ($\sigma_v - \delta$ 曲線)を示す.また、表 2 に基準変位時の 杭先端荷重 P と先端支持力係数 α を示す.

(1) 杭先端荷重~杭先端変位 (P-δ曲線)

閉端杭の杭先端荷重 P は,載荷初期から荷重が増大 しており,0.1D 時の先端荷重は P=1.98(α=534)であり, 十分な先端支持力を発現しているものと思われる.

これに対して,開端杭の杭先端荷重 P の発現は遅く, 開端杭の 0.1D 時の荷重値は P=0.04kN(α=11.5)を示 し,閉端杭の 2%程度の先端支持力しか発現していない ことがわかった.

また,開端杭(支圧円盤)は,内径φが縮小するごと に閉端杭の曲線形状に近づき,内径φ=15mmの0.1D 時の荷重値は, P=1.89kN(α=508)を示し,閉端杭と同 等の値を示した.これらは,支圧円盤によって先端部 の抵抗が増え,先端支持力が向上したと考えられる.

(2) 土槽底面鉛直土圧~先端変位関係 ($\sigma_v - \delta$ 曲線)

閉端杭における土槽底面の土圧(σ_v)は、載荷開始 時で $\sigma_v = 18 \sim 20 \text{ kN/m}^2$ の値を示し、載荷開始と同時に 増大して、杭先端荷重とほぼ同様の曲線形状を示した.

開端杭の砂槽底面鉛直土圧 (σ_v)は,載荷開始後は, $\delta = 0.5D$ 程度まで土圧値は変化していない. $\delta = 0.5D$ 以降は, σ_v は緩やかに増大するが, $\delta = 1D$ 時で $\sigma_v =$ 15 kN/m² (閉端杭の 1/3 程度)であり,杭変位による土 槽内の応力伝達範囲は非常に小さいことが理解された.

開端杭(支圧円盤)は、内径φが縮小するごとにσ_vが 増大している.また、載荷が進行するごとにσ_vが増大 しているのがわかる.杭先端部の抵抗が増えると、土 槽内の応力伝達範囲が大きくなることが理解された. 4. おわりに

本実験によって閉端杭と開端杭の基本的性状が理解 された.また,先端形状を工夫することで,開端杭で も閉端杭に近い先端支持力を発現することがわかった. 今後は,セメントミルク工法によって作成した杭の載 荷試験などを実施し,埋込み杭の先端支持力性能を向 上させる方法を検討していきたい.

参考文献

 国府田,佐藤他:螺旋羽を持つ回転貫入杭の貫入および支持 力に関する基礎的研究,日本建築学会構造系論文集,No. 601, pp.91-98,2006.3

表2 基準変位時の荷重値および先端支持力係数