# C-3

# Fabrication of surface periodic nano metallic structure on meso-polus SiO<sub>2</sub> substrate and high density isolated FePt grains

\*Masayuki Imazato<sup>1</sup>, Arata Tsukamoto<sup>2</sup>

In this report, meso-polus SiO<sub>2</sub> substrate with periodical surface nano-pores are prepared by utilizing self-assembling / self-organizing phenomenon of tri-block copolymer (Nano Dent Arrey: NDA)<sup>[1]</sup>. Countinuous metallic double layer of Au (2.5 nm) / Fe (1.0 nm) is deposited on the NDA. In order to get isolated Au particles smaller than 10 nm diameter and periodicity of ~ 15 nm, the deposited metallic layer is etched by Ar ion in incident angle of 85° from nomal to the film surface. Fabricated surface periodic nano Au particles have average diameter of ~ 9.5 nm and the periodicity of 12.5 ~ 15.0 nm. Isolated FePt grains are fabricated by Rapid Thermal Annealing with rapid cooling process (RTA)<sup>[2]</sup> on the fabricated surface periodic nano metallic structure. The FePt grains have average grain diameter  $D_a = ~ 7.63$  nm, areal density of particles  $N_p = 3.82$  T particles / inch<sup>2</sup>, standard deviation of  $D_a$   $S_D = 1.37$  nm. On the other hand, in the case of FePt grains fabricated FePt grains on surface periodic nano metallic structure are decreased  $\Delta D_a = ~ 6.5$  nm, increased  $\Delta N_p = 3.06$  T particles / inch<sup>2</sup> and decreased  $\Delta S_D = 1.11$  nm comparing with fabricated on flat thermally oxidized Si substrate.

## 1. Introduction

The idea of this study could achive to get small FePt grains less than 10 nm and high density grains to several T particles / inch<sup>2</sup> for the purpose as Bit Patterned Media of ultra high density recording media. We reported that meso-polus SiO<sub>2</sub> substrate with periodical surface nano-pores were prepared by utilizing self-assembling / self-organizing phenomenon of tri-block copolymer (NDA), And showed possibility of leading fabricated potision of FePt grains on filling middle of particles with Au structure in fabricated self assembled nano-sillica particles by defference of surface enegy between Au and SiO<sub>2</sub><sup>[3]</sup>. In this report, We fabricate surface nano periodic Au particles structure utilizing method of Ar ion Dry Etching to deposited continuous Au / Fe double layer on NDA in incident angle of 85° from nomal to the film surface. The structure has small diameter less than 10 nm and periodycity of ~ 12 nm utilized periodical structure of NDA. We fabricate high density FePt several nm grains on surface nano periodic metallic structure and flat thermally oxidized Si substrate as reference structure.

## 2. Fabrication of NDA

Surface nano periodic metallic structure is fabricated utilized NDA. Thus, surface nano periodic metallic structure depends on periodic structure of NDA. In order to form preiodicity of ~ 12 nm nano-pores, molecular weight of a tri-block copolymer is used 8400 g / mol. Transmission Electron Microscope: TEM planer view images of Fabricated NDA is shown in Figure 1. The meso-polus SiO<sub>2</sub> substrate film is consisted from face-center-cubic lattice. The periodicity of pores is approximately 11.2 ~ 14.0 nm, in Figure 1.

# 3. Ar ion Dry Etching for Au layer on NDA

Countious metallic double layer of Au (2.5 nm)/Fe (1.0 nm) is deposited on the NDA using DC magnetrin sputtering. The thin film is observed uniform surface structure by Scaning Electron Microscope: SEM and Atomic Force Microscope: AFM. The deposited metallic layer is etched by Ar ion in incident angle 85° from vertical line to thin film. The etching gas is



**Figure 1** TEM planer view images of NDA (b) guide to eye. (a), (b) are similler images.



**Figure 2** SEM planer view images of etched Au / Fe / NDA thin film (b) guide to eye. (a), (b) are similler images.

<sup>1:</sup> Graduate course of Electronic Engineering, CST, Nihon-U. 2: Department of Electronics Engineering, CST, Nihon-U.

Ar ion, the acceleration voltage is 500 V, the incident ion electric current density is  $1.5 \text{ mA} / \text{cm}^2$  and the etching time is 75 sec. The images of SEM planer view, TEM planer view, and electron beam diffraction view were shown Figures 2,3(a) ~ (c). The average periodicity of Au particles in a domain of reflect periodic NDA structure is approximately  $12.5 \sim 15 \text{ nm}$  cearly the peridodic structure depend on etching direction and periodic structure of NDA. Crystallographic structure is observed by electron beam diffraction in only black region of Figure 3 (a), as in Figure 3 (b). Non-crystalline structure region is confiremed by observation of electron beam diffraction in only white region of Figure 3 (a), as in Figure 3 (c). As a result the fabricated surface structure consist from metallic particles and non-crystalline SiO<sub>2</sub> region.

### 4. Fabrication of isolated FePt grains

To get smaller isolated FePt grains and higher density grains, FePt grains are fablicated on (A): surface nano periodic metallic structure, (B): flat thermally oxidized Si substrate as reference. Pt (1.05 nm) / Fe (0.83 nm) double layer deposited on sub using DC Magnetron Sputtering. The composition of the films are Fe  $_{50}$  Pt  $_{50}$ . At first, substructure is used (A): surface nano periodic metallic structure, Isolated FePt grains are fabricated by RTA at the heating rate  $T_R = 107$  °C / s and the maximum temperature  $T_m = 406$  °C for



**Figure 3** (a): TEM planer view image of fabricated surface nano metallic structure. (b): Electron beam diffraction image in only black region. (c): Electron beam diffraction image in only white region.



**Figure 4** (a): SEM planer view image of isolated FePt grains on surface nano metallic structure (b): on flat thermally flat oxidized Si substrate.

continuous double films shown in Figure 4 (a).  $D_a = \sim 7.63$  nm,  $N_p = 3.82$  T particles / inch<sup>2</sup>,  $S_D = 1.37$  nm. At second, substrate is used (B): flat thermally oxidized Si substrate, FePt grains is fabricated by RTA at the  $T_R = 112^{\circ}$ C / s and the  $T_m = 672^{\circ}$ C for continuous double films shown in Figure 4 (b),  $D_a = 14.1$  nm, the  $N_p = 0.76$  T particles / inch<sup>2</sup> and the  $S_D = 2.48$  nm. Therefore, fabricated FePt grains on surface nano structure make  $\Delta D_a$  decrease ~ 6.5 nm,  $\Delta N_p$  increase 3.06 T particles / inch<sup>2</sup> and  $\Delta S_D$  decrease 1.11 nm comparing with fabricated on flat thermally oxidized Si substrate.

# 5. Conclusion

We fabricate surface nano metallic structure by utilized NDA having the average periodicity of pores approximately 11.2~14.0 nm. The structure consist on metallic particles on meso-polus SiO<sub>2</sub> that average diameter is approximately 9.5 nm and the average periodicity is 12.5 ~ 15.0 nm. On surface nano metallic structure, fabricated FePt grains have  $D_a = 7.63$  nm,  $N_p = 3.82$  T particles / inch<sup>2</sup> and  $S_D = 1.37$  nm. On the other hand, fabricated FePt grains on flat thermally oxidized Si substrate have  $D_a = 14.1$  nm,  $N_p = 0.76$  T particles / inch<sup>2</sup> and  $S_D = 2.48$  nm. Fabricated FePt grains on surface nano structure decrease  $\Delta D_a = ~ 6.5$  nm, increase  $\Delta N_p = 3.06$  T particles / inch<sup>2</sup> and decrease  $\Delta S_D = 1.11$  nm comparing with fabricated on flat thermally oxidized Si substrate.

### Acknowledge

This work is partially supported by Storage Research Consortium and MEXT-Supported Program for the Strategic Research Foundation at Private Universities2013-2017.

#### References

- A. Itoh, and A. Tsukamoto : "Hybrid magnetic recording medis on FePt grains and self-assembled nano-structured layers", J. Magn. Soc. Jpn. Vol. 33, pp507-512, 2009.
- [2] A.Itoh, A.Tsukamoto, S. Okame, and K. Mizusawa : "A Role of Rapid Thermal Annealing (RTA) for Achieving Fine Isolated Grains of FeCuPt", J. Magn. Soc. Jpn, vol.36, pp62-65, 2012.
- [3] S. Fujii, and K. Mizusawa : "Fabrication of Nano Structured metal/dielectric Under Layer by self-assembled nano-silica particles" The 35th Annual Conference on The Magnetics Society of Japan, 2011.