C-9

c 面およびr 面 LiNbO3 基板上における $m Cr_2O3$ 薄膜の結晶成長および磁気特性

Crystal Growth and Magnetic Property of Cr₂O₃ Thin Films on *c*- and *r*- LiNbO₃ Substrates

○ 中村拓未¹, 林佑太郎¹, 隅田貴士², 橋本浩佑², 永田知子³, 山本寛³, 岩田展幸³,

*Takumi Nakamura¹, Yutaro Hayashi¹, Takashi Sumida², Kosuke Hashimoto²,

Tomoko Nagata³, Hiroshi Yamamoto³, Nobuyuki Iwata³,

Abstract: Cr_2O_3 thin films are deposited on LiNbO₃(LNO)(0001) and (1-102) substrates using DC-RF magnetron sputtering method. The LNO substrates are annealed in air at 1200°C for 6 hours, for (0001) plane and (a)750°C for 6 hours or (b)900°C for 12 hours for (1-102) plane. On LNO(0001), Cr_2O_3 thin film grew with the spherical shape having a diameter of 50 nm. On LNO(1-102), anisotropic grains were observed along the step of the substrate. These results are discussed from the view of the crystal structure and anneal condition of the substrate.

1. 背景・目的

強磁性 (Ferromagnetism : FM)/反強磁性 (Antiferromagnetic : AFM)積層膜界面における磁気的交換相互作用によって,FMの磁化曲線がシフトすることが知られている.このシフトする磁場を交換バイアス磁場(H_{EB})と呼ぶ. Meiklejohn-Bean によると, H_{EB} は積層膜界面における AFM のスピンの大きさに比例する^[1]。Cr₂O₃は電気磁気(ME)効果を示す反強磁性体であるため,Cr₂O₃最表面のスピンの大きさを電界印加により制御できる.このため,電界印加によりFMの磁化を反転させられる可能性がある。ただしそのためには,Cr₂O₃薄膜表面が原子レベルで平坦であり,単一グレインで構成されている必要がある.

これまで、DC-RFマグネトロンスパッタ法を用いて r面およびc面サファイア基板上にCr2O3薄膜を作製し、 それぞれの結晶成長の違いについて解析を行ってきた. ^[2,3] 逆格子マップの結果から c 面配向膜は双晶を含む ことが分かった. r 面配向 Cr₂O₃薄膜表面では, 双晶が 観測されないものの、15-30nm の深い溝が発生した. Cr₂O₃の双晶は Cr のディスロケーションにより起こる が、r面はCrとOが交互に並ぶ構造であり、Crがディ スロケーションすると表面エネルギーが高くなってし まうため双晶は発生しにくい. しかしサファイア基板 との格子ミスマッチが大きいため(+4.01%、+4.34%), 溝が発生してしまう. これに対し, c 面は Cr がディス ロケーションしても表面エネルギーが変化しないため 双晶が発生しやすい. また格子ミスマッチが大きいた め(+4.01%)多数のグレインに分かれ,双晶が発生して しまう。つまり, r面に関しても c面に関しても格子ミ スマッチを小さくすることが重要である.

そこで本研究では、格子ミスマッチの小さい基板としてLiNbO₃(LNO)基板を選択し, c 面での双晶の発生、

r 面での溝の発生を抑えることを目的とした. LNO の 結晶構造は Cr₂O₃ が属すコランダム構造に似たイルメ ナイト構造である. Cr₂O₃ との格子ミスマッチは, c 面 では-3.77%, r 面では-3.77%, -2.52% である.

2. 実験方法

c面, r面LNO 基板をアセトン5分, 15分, エタノール5 分で超音波洗浄を行った.熱処理条件として, c 面では 1200°C, 6時間, r面では(a) 750°C, 6時間, (b)900°C, 12 時間大気中で熱処理を行った. DC-RFマグネトロンスパ ッタ法を用いて,それぞれのLNO 基板上に Cr₂O₃薄膜を 成膜した.成膜条件は c 面では基板温度 620°C, r 面で 580°C, 導入ガス O₂/Ar 比を 0.25 (2/8ccm), 成膜時間は 2時間とし,成膜後酸素 0.1MPa 中で温度を低下させた.

3. 結果

c 面 LNO 基板上に作製した Cr₂O₃薄膜表面像および XRD(2θ-θ)を図1に示す.薄膜表面像より,粒径約0.5µm の丸いグレインが成長しており,粒界に深さ約3nmの ホールを確認した.また表面には全体的に微粒子が分 布していた.XRD(2θ-θ)パターンより,基板ピークの高 角側に Cr₂O₃のピークを確認した.(00012)ピークから 格子間隔を計算したところ,0.2280nmと算出され c 面 Cr₂O₃のバルク値と誤差 0.6%でほぼ一致した.結晶性 の指標となる半値幅(FWHM)は 0.293°となった.また 基板ピークの低角側に原因不明のピークが観測された.

図 3 に r 面 LNO 基板上に成膜した Cr₂O₃ 薄膜表面像 を示す. (a)750℃, 6 時間で熱処理した基板上には約 20nm, (b)900℃, 12 時間では約 60nm の深い溝がグレ イン間に発生したものの,一つのグレイン表面だけを みると,どちらの熱処理条件でも nm オーダーで平坦 であった.また, (b)では幅約 0.4µm,長さ 4µm 以上の

1: 日大理工・院(前)電子工学専攻 2: 日大理工・学部 電子工学科 3: 日大理工・教員 電子工学科

ー方向に長い一軸異方性を持ったグレインが成長した. 図4にr面 Cr_2O_3 薄膜の $XRD(2\theta-\theta)$ パターンを示す. 基板ピークの高角側に Cr_2O_3 のピークを確認した. Nelson-Riley 関数から(1-102)の格子間隔は 0.3633nm と 算出され, r面 Cr_2O_3 のバルク値とほぼ一致した.また FWHM は 0.507°となった.

図 1 (左) c 面 LNO 基板上に成膜した Cr₂O₃ 薄膜表面像 (2×2µm²). 粒径約 0.5µm の丸いグレインが成長しており, 粒 界に約 3nm のホールを確認した.(右) c 面 LNO 基板上に成膜 した Cr₂O₃ 薄膜の XRD(2θ-θ)パターン.黒丸は基板ピークを示す. 基板ピークの高角側に Cr₂O₃ のピークを確認した.三角は原 因不明のピークを示す.

図3 (a)750℃, 6h, (b)900℃, 12h アニール後の r 面 LNO 基 板上に成膜した Cr₂O₃ 薄膜表面像(2×2µm²). 細長いグレイン が成長し, グレイン間に(a)20nm, (b)58nm の深い溝が発生し ていたものの, 単一グレインの表面は nm オーダーで平坦だ った.

図 4 r 面 LNO 基板上に成膜した Cr₂O₃薄膜の XRD(2θ - θ)パタ ーン. 黒丸は基板ピークを示す. 基板ピークの高角側に Cr₂O₃ のピークを確認した. 三角は原因不明のピークを示す.

4. 考察

c面LNO基板上のCr₂O₃薄膜の表面には微粒子が観

測された.c面では1200℃の高温で熱処理を行ったため、 Liの高い蒸気圧が原因で、Li-Cr-Oに起因する酸化物が 成長し、微粒子となって薄膜表面に現れたと予想して いる.

r 面 LNO 基板上の Cr₂O₃薄膜は、LNO 基板を高温, 長時間熱処理した場合、異方性の強いグレインで構成 されていた.r面LNO 基板の格子ミスマッチは、-3.77%、 -2.52%と異方性を持っている.よって格子ミスマッチ が大きい方向には格子歪みの影響を受けて溝が発生し, 逆に小さい方向には格子歪みの影響が少ないため、溝 が発生しにくく、一軸異方性のある長いグレインが成 長したと考えている. 低温・短時間の熱処理では異方 性を持つグレインが観測されなかったため、LNO 基板 のグレイン構成にも依存していると考えている.また, 本研究ではサファイアより格子ミスマッチの小さい LNO 基板を用いたものの, XRD 測定から c 面上でも r 面上でも Cr₂O₃ 薄膜は格子ミスマッチを緩和して成長 したことが分かった.したがって, c 面での双晶の発 生、r面での溝の発生を抑えるためには、より格子ミス マッチの小さい基板を用いることが有用である.また, 薄膜の表面形状は基板の熱処理条件にも依存すること が分かったため、熱処理条件の最適化も有用である.

5. まとめ

c面およびr面LNO基板上に Cr_2O_3 薄膜を作製した. c面配向 Cr_2O_3 薄膜では双晶が発生し,r面配向 Cr_2O_3 薄膜では,異方性の強いグレインが深い溝を隔てて成 長していた.より格子ミスマッチの小さい基板を探索 すると共に,熱処理条件の最適化を行う必要がある. 当日は磁気特性も合わせて報告する.

- 6. 参考文献
- W. H. Meiklejohn and C. P. Bean, Phys. Rev. 5 (1956) 1413-1414.
- [2]N. Iwata, T. Asada, S. Ootsuki, and H. Yamamoto, Mater. Res. Soc. Symp. Proc. **1034** (2008) K10-67.
- [3]N.Iwata, T.Asada, K.Nagase, T.Yamada and H.Yamamoto, Physica C **463-465** (2007) 1005-1008.