J-12

津波漂流物の衝突を想定した RC 部材の挙動に関する実験的研究 その2 実験結果

Experimental Study on Behavior of RC Members Caused by Collision of Tsunami Drift-age Experimental Resulfs

柳田颯太郎¹, ○菅野裕識², 石渡晶悟³, 北嶋圭二⁴, 中西三和⁴, 安達洋⁵ Sotaro Yanagida¹, Kanno Hironori², Shogo Ishiwata³, Mitsukazu Nakanishi⁴, Keji Kitajima⁴, Hiromi Adachi⁵

The purpose of this study is to investigate the behavior of RC members caused by a collision of Tsunami Drift-age. In this study, the static loading test and the drop tests of weight to steel and RC beams are performed. In this paper, the test results are presented.

1. はじめに

前報(その1)では実験概要について示した。本報(その2)では実験結果について述べる。

2. 実験結果

2.1 弾性梁部材(ケース1)

1)静的載荷実験結果

Fig.1 に荷重-変位関係(静的載荷)を示す。静的載荷 実験では、梁中央フランジ下面に貼付したひずみ測定 値が、降伏ひずみに至らない荷重 54kN(変位 3mm)で実 験を終了した。実験では、加力初期の段階で支点の移 動量を含んだ荷重-変位関係が得られていることから、 初期剛性は直線的な荷重-変位関係を示した変位1.5mm から 3mm までの傾き(k=22.8kN/mm) として評価した。

2) 衝突実験における荷重・変位の時刻歴曲線

Fig.2 に荷重の時刻歴曲線, Fig.3 に変位の時刻歴曲線 を示す。図には得られた実験データのうちの代表例(錘 の落下高さ 319mm)を示した。荷重は 0. 2msec で最大値 (100kN)に到達し,変位は 0. 3msec で最大値(-5. 7mm) に到達した。その後,荷重・変位共に振動しながら減 衰した。

3) 最大荷重と錘の落下高さの関係

Table.1 に最大荷重-最大変位の理論値及び実験値を 比較して示した。また,Fig.4 に最大荷重-錘の落下高 さの関係,Fig.5 に最大荷重-錘の衝突速度の関係を示 す。図には理論値も合わせて表記した。なお,事前に 同パラメータの予備実験を複数回行い,本実験範囲で はデータにばらつきがないことを確認している。理論 値の最大変位と最大荷重は,前報の(4)式と(5)式から 算出した。理論値算出の際,弾性剛性は実験値を用い た。弾性範囲内では,いずれの落下高さでも実験値は 理論値に近い値を示し,最大荷重は錘の衝突速度に比 例して増大する。

2.2 RC部材 (ケース2)

1)静的載荷実験結果

Fig.6 に荷重-変位関係, Fig.7 に静的載荷実験の最終 破壊形状を示す。破壊形式は,曲げひび割れの発生と 引張側の主筋が降伏する曲げ引張破壊であった。静的 載荷実験では,荷重13.5kN,変位2.0mm時に引張鉄筋 が降伏した。その後,変位16mmで圧縮側のコンクリ ートが圧壊,変位56.7mmで最大荷重(22.7kN)に到達 した。引張主筋降伏時の割線剛性は 6.6kN/mm であった。 なお,曲げ降伏時の割線剛性は弾性剛性に剛性低下率 α_y(菅野式³)をかけた値(5.8kN/mm)を計算値とした。

2)衝撃載荷実験の破壊性状

Fig.8 に衝撃載荷を行った試験体の破壊性状を示す。 図には衝撃載荷を行った試験体のうちの代表例(試験 体 W60-V3.0-H25,試験体 W60-V5.0-H25)を示す。両試

験体とも曲げひび割れが生じ, 錘の衝突速度が速い試験体 W60-V5.0-H25 では,試験体上面 の錘衝突位置が圧壊した。また, 両試験体とも静的実験では見ら

5:日大理工・名誉教授 Emeritus Prof.Nihon Univ.Dr.Eng.

1:日大理工・学部(4年)・海建 undergraduate,Nihon Univ.

2:日大理工・院(前)・海建 Graduate Student, Nihon Univ.

3:能勢建築構造研究所 修士(工学) Nose Structural Engineering Inc., M.Eng.

れなかった試験体上面からのひび割れが生じた。

3) 最大荷重と最大変位の関係

Table.2 に衝撃載荷実験結果, Fig.9 に最大荷重比-最 大変位の関係を示す。なお、最大荷重比は、昨年及び 今年度実施した実験にて得た衝撃載荷時の最大荷重を, 試験体の降伏耐力で除した値である。また、図には静 的載荷実験結果(荷重-変位関係)及び弾性体とした時 の理論値(前報(4)式,(5)式)も合わせて示している。 試験体 W30-V0.5-H25 を除き錘の質量にかかわらず, 錘の衝突速度の増加に伴い荷重及び変位が増加した。 主筋降伏前の比較的変形の小さな範囲の実験では、最 大変位と最大荷重の関係がケース1の実験同様理論値 に近い値を示した。RC 試験体は静的載荷実験結果にみ られるように、変形の増大に伴ってひび割れの発生、 主筋の降伏により塑性化し荷重が頭打ちになる。この ため, 錘の衝突速度が速くなると, 理論値の衝突荷重 とは次第にかけ離れた値を示す一方変位が増大する。 しかし、この衝撃載荷時の最大耐力は静的載荷による 最大耐力を大きく上回った。

4) 最大変位と錘の衝突速度の関係

Fig.11に最大変位-錘の衝突速度の関係を示す。図に は、理論値も合わせて示した。理論値は、錘の運動エ ネルギー(1/2mV²)と梁の塑性変形を考慮したひずみエ ネルギーを等置して求めた。なお、荷重-変位関係は、 降伏耐力と剛性の理論値(その1 Table.2)を基に Fig.10 に示すバイリニアモデルとした。実験値は、衝突速度 が大きくになるにつれてばらつきがあるが、エネルギ ー保存則を適用した理論値と概ね一致している。

5)ひずみ速度と最大荷重の関係

Fig.12 にコンクリートのひずみ速度-錘の衝突速度 関係, Fig.13 に主筋のひずみ速度-錘の衝突速度関係, Fig.14 に最大耐力上昇比-ひずみ速度関係を示す。ひず み速度は、サンプリングタイム(試験体 W60-V5.0-H26 は、0.05msec その他の試験体は、0.1msec)ごとのひず み変化量をサンプリングタイムで除した値であり,図 には,各試験体のコンクリート及び載荷点下段主筋位 置で計測されたひずみ速度の最大値を示している。い ずれの試験体でも衝撃レベルのひずみ速度とされる 10⁰/s を上回っている⁴。一般的にひずみ速度の増加に 伴い、コンクリート及び鉄筋の材料強度が上昇するこ とが知られている。筆者等が行ったコンクリートの衝 撃載荷実験 5では、衝撃レベルのひずみ速度下では、 圧縮強度が 1.6~2.1 倍程度上昇することを確認して いる。鉄筋の場合においても降伏点強度が1.5~2.5倍 程度上昇することを文献調査より把握している^{の, 7}。

衝撃載荷時の最大耐力が静的最大耐力を上回った。

3. まとめ

鋼製弾性梁部材及び RC 部材を対象にした静的載荷 実験と錘の落下実験から以下の知見を得た。

・津波漂流物の衝突を想定した、単純支持した部材への錘の落下試験から衝突荷重の最大値は、錘の衝突速度及び質量、部材剛性より概算できることを確認した。
・RC造部材の最大応答変位は、塑性変形を考慮したエネルギー保存則に基づき試算できることを確認した。

・衝撃載荷時の最大耐力が静的最大耐力を上回った原 因は,ひずみ速度による材料強度の上昇で説明できる

