J-16

くい違い配置2円柱の流体力特性と流力振動に関する数値計算

Numerical analysis for fluid forces and flow-induced vibrations of two staggered circular cylinders

○神田恒平¹, 近藤典夫², 惠藤浩朗² Kohei Kanda¹, *Norio Kondo², Hiroaki Eto²

Experimental investigations for flow-induced vibration of two circular cylinders, which are mounted at tandem arrangement, have been reported by many researchers. In the case of the circular cylinders, it is well-known from the experimented results that the flow-induced vibrations become significantly large in a certain region of the reduced velocity.

In this paper, we present the numerical result for flow-induced vibrations of the circular cylinders which are mounted at the staggered arrangement. Each of two cylinders is treated at two –degrees of freedom of the rigid body.

1. はじめに

2 円柱構造物においては、直列配置と並列配置が主 に研究対象にされており、くい違い配置に関する研究 は少ない.^{[1], [2]}

本研究では、くい違い配置された2円柱の流力振動 解析を行い、その流体力および振動性状を捉える.

2. 研究方法

くい違い配置の2円柱の間隔比*S/D*(S:2円柱の中心 間距離, D:円柱の直径)の値が2の円柱まわりの偏り 流れと振動挙動の解析を行う.

本研究で採用する3次元円柱は,Fig.1に示すように 剛な1質点2自由度系モデルとし,Fig.2のようなイン ラインとクロスフローの2方向の振動方程式を考慮す る. このような2円柱モデルに対し,流体運動を支配 する非圧縮ナビエ・ストークス方程式を採用する.

このとき U_0 は流速, θ はくい違い配置の角度,D は 円柱底面の直径,H は円柱高さ,S は円柱の中心間距 離とする.

Fig.1 2円柱の数値計算モデル

the rigid body. $Y_2 \xrightarrow{C_{12}} C_{12}$ $\xrightarrow{\psi} \xrightarrow{\chi_2} C_{12}$ $\xrightarrow{\chi_2} \xrightarrow{\chi_2} C_{12}$ $\xrightarrow{\psi} \xrightarrow{\chi_2} \xrightarrow{\chi_2}$

Fig. 2 抗力係数 C_Dと揚力係数 C_L, 無次元変位 X, Yの正の向き

3. 研究結果

本研究の数値解析では、Fig.1 のように2 円柱がくい 違い配置で静止および振動状態流力解析を行った.こ のとき角度 $\theta = 60^{\circ}$ 、質量比は 12、構造減衰定数は 0.663%に設定した.この結果スクルートン数は 1.0 に なる.レイノルズ数は 20000 とした.また、振動状態 では換算速度 $U_r \approx 5$ とする.さらに2 円柱の間隔比 *S/D* を2 に、スパン比 *H/D* を 2.5 に設定した.

上記条件における 2 円柱の無次元振動変位の時刻歴 曲線を Fig.3 に示す. このとき *X*₁, *X*₂は円柱 1, 2 のイ ンライン振動変位, *Y*₁, *Y*₂ は各々円柱のクロスフロー 振動変位を示す.

くい違い配置での2円柱の異なる振動性状が捉えられている.

^{1:}日大理工・院(前)・海建 2:日大理工・教員・海建

円柱1の静止および振動状態の圧力係数 C_p , 円柱2 の静止および振動状態の圧力係数 C_p をFig.5, Fig.6に示す.

Fig. 5 円柱2の圧力係数 Cp

Fig. 4, Fig. 5 より静止,振動状態のどちらも円柱が 接する側で最も大きな圧力を受けていることがわかる.
静止および振動状態の円柱 1, 2 それぞれの抗力係数
C_D,揚力係数 C_L,背圧係数 C_{pb} を Fig. 7~Fig. 10 に示 す.またそれぞれの平均値を Table1, 2 に示す.

Fig. 7 静止状態の円柱1のC_D, C_L, C_{pb}

Fig. 8 静止状態の円柱 2 の C_D, C_L, C_{pb}

Fig.9 振動状態の円柱1のC_D, C_L, C_{pb}

Fig. 10 振動状態の円柱 2 の C_D , C_L , C_{pb} Table 1 静止状態の C_D , C_L , C_{pb} の平均値

		B = B = P	
	抗力係数 CD	揚力係数 CL	背圧係数 Cpb
円柱1	1.094	-0.469	-1.094
円柱2	1.836	-0.085	-1.903
Table2 振動状態の C_D , C_L , C_{pb} の平均値			
	抗力係数CD	揚力係数 CL	背圧係数 C_{pb}
円柱1	0.981	-0.534	-0.857
円柱2	2.439	0.014	-2.488

Fig. 7~Fig. 10, Table1, 2より, 円柱1に関しては静止, 振動状態による差はあまり大きく見られないが, 円柱2の方は静止と振動状態との差が大きくなったことが確認できた.

4. おわりに

本研究では2円柱を $\theta = 60^{\circ}$ でくい違い配置をした2 円柱の振動解析を行った.その結果並列時とは異なり, 2円柱それぞれにおいて対称ではない異なる結果が得 られた. 今後は $\theta = 60^{\circ}$ だけでなく $\theta = 5^{\circ}$, 10°など角度 を変えて解析を行い,くい違い配置による2円柱の振動 挙動を捉える.

参考文献

- 岡島厚,杉谷健一郎,溝田武人:一様流中に置かれた並列2構造物に働く流体力,風洞シンポジウム, pp.285-290,1984年
- [2] 金相一,坂本弘志:くい違い配列された2円柱の流 力振動特性に関する研究,日本機械学会論文集,73
 巻,725号,pp.139-146,2007年