Quad Tilt-Wing 型 UAV の遷移飛行制御 Transition Flight Control of Quad Tilt-Wing UAV

○三上隆人¹, 横井里奈¹, 内山賢治²

oTakahito Mikami¹, Rina Yokoi¹, Kenji Uchiyama²

Abstract: This paper describes the flight control system for transition flight of Quad Tilt-Wing(QTW)-UAV. QTW-UAV can achieve vertical takeoff and landing , hovering flight , and high cruising speed. We design the translational and attitude control system using dynamic inversion method because nonlinear dynamics cannot be ignored during transition flight. The validity of the proposed control system is verified numerically and experimentally.

1. はじめに

無人航空機(UAV)は、高速飛行に適している固定 翼UAVとホバリング機能に特化した回転翼UAVに分 けられ、これらの能力を併せ持つ航空機としてティル トウィング型UAV(QTW-UAV)の研究が行われてい る.QTW-UAVの運動は遷移飛行時に非線形性が顕著 に現れる.従来の研究^{[1][2]}では、非線形性を考慮した制 御系設計がされておらず、遷移飛行時にシステムが不 安定になる可能性がある.

本稿では Dynamic inversion (DI) 法により,遷移飛 行時の非線形性を考慮した飛行制御系を提案し,その 有効性を数値シミュレーションと実機による実証実験 により確認する.

2. 制御系設計

2.1 運動方程式

本研究で用いる QTW-UAV は 2 つのティルトウィン グを有しており,垂直離着陸や水平飛行が可能となっ ている.機体の位置や姿勢は,翼に取り付けられたフ ラッペロンと 4 つのプロペラを用いて制御する.機体 の状態量,制御入力の定義を Fig.1 に示す.機体の非線 形運動方程式は以下のように表される.

$$\dot{\mathbf{V}} = -\widetilde{\boldsymbol{\omega}}\mathbf{V} + \mathbf{C}^{\text{B/I}}\mathbf{g} + \frac{1}{m}\{\mathbf{F}_{air}(\alpha, \boldsymbol{\xi}) + \mathbf{T}(\boldsymbol{\xi})\}$$
(1)

$$\dot{\boldsymbol{\omega}} = -\mathbf{J}^{-1}\widetilde{\boldsymbol{\omega}}\mathbf{J}\boldsymbol{\omega} + \mathbf{J}^{-1}\{\mathbf{M}_{air1}\boldsymbol{\omega} + \mathbf{M}_{air2}(\boldsymbol{\alpha},\boldsymbol{\xi}) + \mathbf{M}(\boldsymbol{\xi})\}$$
(2)

上式で用いた行列やベクトルの各要素を以下に示す. 式中, $c\theta = \cos \theta$, $s\theta = \sin \theta$ とした.また, Table 1 に 式で用いた変数の定義を示す.

$$\mathbf{V} = [U \ V \ W]^T, \mathbf{\omega} = [P \ Q \ R]^T, \mathbf{\xi} = [\xi_1 \ \xi_2]^T, \mathbf{g} = [0 \ 0 \ g]^T$$
$$\widetilde{\mathbf{\omega}} = \begin{bmatrix} 0 & -R & Q \\ R & 0 & -P \\ -Q & P & 0 \end{bmatrix}, \quad \mathbf{J} = \begin{bmatrix} I_{xx} & 0 & I_{xz} \\ 0 & I_{yy} & 0 \\ I_{xz} & 0 & I_{zz} \end{bmatrix}, \quad \mathbf{M}_{air1} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -S_y \end{bmatrix}$$

$$\mathbf{C}^{\text{B/I}} = \begin{bmatrix} c\theta c\psi & c\theta s\psi & -\sin\theta \\ s\phi s\theta c\psi - c\phi s\psi & s\phi s\theta s\psi + c\phi c\psi & s\phi c\theta \\ c\phi s\theta c\psi + s\phi s\psi & c\phi s\theta s\psi - s\phi c\psi & c\phi c\theta \end{bmatrix}$$
$$\mathbf{F}_{air}(\alpha, \xi) = \begin{bmatrix} -f_{11}s\xi_1 - f_{12}s\xi_2 + (f_{k1} + f_{k2})|s\alpha| - (f_{d1} + f_{d2} + f_{d3})c\alpha \\ -f_{d4} & -f_{d4} \\ -f_{11}c\xi_1 - f_{12}c\xi_2 - (f_{k1} + f_{k2})c\alpha - (f_{d1} + f_{d2} + f_{d3})s\alpha \end{bmatrix}$$
$$\mathbf{T}(\xi) = \begin{bmatrix} (T_1 + T_2)c\xi_1 + (T_3 + T_4)c\xi_2 - (F_1 + F_2)s\xi_1 - (F_3 + F_4)s\xi_2 \\ -(T_1 + T_2)s\xi_1 - (T_3 + T_4)s\xi_2 - (F_1 + F_2)c\xi_1 - (F_3 + F_4)c\xi_2 \end{bmatrix}$$
$$\mathbf{M}_{air2}(\alpha, \xi) = \begin{bmatrix} l_s \{f_{l1}c\xi_1 - f_{l2}c\xi_2 + (f_{k1} - f_{k2})c\alpha + (f_{d1} - f_{d2})s\alpha \} \end{bmatrix}$$

Table 1. Definitions physical quantity

α	迎角	f_{l1}, f_{l2}	主翼揚力
g	重力加速度	f_{k1}, f_{k2}	機体揚力
т	機体質量	f_{d1}, f_{d2}	主翼抗力
ξ_1	前翼ティルト角	f_{d1}, f_{d2}	機体抗力
ξ_2	後翼ティルト角	T_1, T_2, T_3, T_4	ロータ推力
S_y	ダンパー抵抗	F_1, F_2, F_3, F_4	フラッペロン偏向推力
l_l	機体軸X _B からロータ位置までの距離		
l_s	機体軸Y _B からロータ位置までの距離		

Figure 1. Definitions of state and control input

^{1:}日大理工・学部・航宇 2:日大理工・教員・航宇

Figure 2. Block diagram of proposed flight control system

2.2 制御系

Fig.2 に提案する制御系を示す.制御系は,機体の並 進運動に対する制御器および姿勢運動に対する制御器 から構成される.並進制御系における位置誤差 x_eを以 下のように定義する.

 $\mathbf{x}_{e} = \mathbf{x} - \mathbf{x}_{c} = [x - x_{c} \quad y - y_{c} \quad z - z_{c}]^{T}$ (3) ここで、 **x** は現在位置、 \mathbf{x}_{c} は目標位置を示す. (1)式お よび(3)式から \mathbf{x}_{e} に関する誤差方程式が次式のように 得られる.

$$\ddot{\mathbf{x}}_{e} = \dot{\mathbf{C}}^{1/B} \mathbf{V} - \mathbf{C}^{1/B} \widetilde{\boldsymbol{\omega}} \mathbf{V} + \mathbf{g} + \frac{1}{m} \mathbf{C}^{1/B} \mathbf{F}_{air}(\alpha, \boldsymbol{\xi}) + \frac{1}{m} \mathbf{T}_{d} \qquad (4)$$
$$\mathbf{T}_{d} = [T_{x} \ T_{y} \ T_{z}]^{T}$$

DI 法を適用して誤差方程式を線形化するための推力 ベクトル T_d は、次式のように非線形項を含む式で表せる.

 $\mathbf{T}_{d} = m \{ -\dot{\mathbf{C}}^{1/B} \mathbf{V} + \mathbf{C}^{1/B} \widetilde{\boldsymbol{\omega}} \mathbf{V} - \mathbf{g} - \frac{1}{m} \mathbf{C}^{1/B} \mathbf{F}_{air}(\alpha, \boldsymbol{\xi}) + \boldsymbol{v}_{x} \}$ (5) 上式において \mathbf{v}_{x} は新たな制御入力である.本稿では, フィードバック制御ゲインの決定に最適レギュレータ を適用する.

ティルト角の指令値 ξ_c ,ロール角の指令値 φ_c は,推 カベクトル \mathbf{T}_d を機体軸からなる平面に投影したベクトルと機体軸とのなす角を求めて決定する.

$$\boldsymbol{\xi}_{c} = \tan^{-1} \left(\frac{-T_{z}}{T_{x}} \right), \quad \varphi_{c} = \tan^{-1} \left(\frac{T_{y}}{-T_{z}} \right) \tag{6}$$

回転制御系についても、上記と同様の手順で制御入 力を導出する.まず、姿勢角誤差 e_eを以下のように定 義する.

 $\mathbf{e}_{e} = \mathbf{e} - \mathbf{e}_{c} = [\varphi - \varphi_{c} \quad \theta - \theta_{c} \quad \psi - \psi_{c}]^{T}$ (7) ここで、 \mathbf{e} は現在姿勢角、 \mathbf{e}_{c} は目標姿勢角を示す. 力 のモーメント \mathbf{M}_{d} を次式で定義することで、姿勢運動 に関する方程式を線形化することができる.

 $\mathbf{M}_{d} = -\mathbf{J}\mathbf{C}^{-1}\dot{\mathbf{C}}\boldsymbol{\omega} + \widetilde{\boldsymbol{\omega}}\mathbf{J}\boldsymbol{\omega} - \mathbf{M}_{air1}\boldsymbol{\omega} - \mathbf{M}_{air2}(\boldsymbol{\alpha},\boldsymbol{\xi}) + \boldsymbol{v}_{e} \qquad (8)$

QTW-UAV はロータ推力とフラッペロン偏向推力で 制御される.実際には、ロータ推力 T_1 , T_2 , T_3 , T_4 , およびフラッペロン偏向推力 F_1 , F_2 , F_3 , F_4 は、(5) 式に示した推力ベクトル T_d 、(8)式の力のモーメント M_d , (1)式および(2)式を用いて算出する.

Figure 3. Developed QTW-UAV

Figure 4. Time responses of QTW-UAV using proposed controller

3. 実証実験

Fig.3 に開発した実験装置を, Fig.4 に実験結果を示す. 機体質量は 0.43[kg], 全長は 0.8[m], 全幅は 0.8[m]で, 風外乱の影響の少ない室内で運用することを想定して いる.実験では,高度,機体軸方向の速度,および姿 勢角の目標値をそれぞれ, $Z_c = -1.2$, $U_c = 1$, $e_c = [0 0 0]$ とした. Fig.4(b), (d)を見ると,ティルト角を変化させ ることで機体速度が増加し一定値に収束していること が分かるが,機体速度に関する定常偏差は約 0.85[m/s] となった.一方,高度や姿勢角については,ほぼ目標 値に収束しており,安定した飛行を実現することがで きた.

4. まとめ

本稿では QTW-UAV の新たな遷移飛行制御の手法を 提案した.また数値シミュレーション及び実証実験の 結果より,提案する制御系を用いることで安定した遷 移飛行を実現することができた.

参考文献

[1]佐藤昌之,村岡浩治, "Quad Tilt Wing 無人航空機の飛行制御",日本航空宇宙学会論文集,Vol.61,No.4,pp.110-118,2013
[2]堀田良和, "ティルト機構を有する4発ロータ無人機のモデリングおよび遷移飛行制御",千葉大学修士論文,2009.