入力飽和を考慮した固定翼 UAV の遷移飛行設計

Control System Design for Transition Flight of a Fixed-Wing UAV with Input Constraint

○羽鳥龍太², 河野哲史², 齊藤健治¹,内山賢治³ Ryota Hatori², Satoshi Kohno², Kenji Saito¹, Kenji Utiyama³

Abstract: This paper describes a new flight control system for transition flight of fixed-wing UAV. Dynamic inversion method and anti-windup control are applied for nonlinearity and input constraint of UAV to guarantee the system stability during its transition flight. The results of numerical simulation and experiment show the effectiveness of proposed system.

1. はじめに

Unmanned aerial vehicle (UAV) は世界中の災害観測ミ ッションに活用されている.特に長距離移動を伴う定点 観測を行う為に、固定翼 UAV を定点でホバリングさせ る研究が注目を集めている.このような遷移飛行を伴う 制御系では航空機の非線形性や制約条件を考慮する必要 がある.これまで本研究では特に航空機の非線形性を考 慮した遷移飛行制御の研究を行ってきたが、制御入力の 制約を考慮した設計が行われておらず、系の安定性に不 安が残っていた.本稿では航空機の非線形性と Anti-windup control (AWC)による制御入力の制約を考慮 した制御系を新たに提案し、その有効性を数値シミュレ ーションと実機による実証実験により確認する.

2. 制御系設計

UAV の非線形運動方程式は以下のように表される^[1].

$$\dot{\mathbf{V}} = -\widetilde{\boldsymbol{\omega}}\mathbf{V} + \mathbf{C}^{\mathrm{I}/\mathrm{B}}\mathbf{g} + \frac{1}{\mathrm{m}}\{\mathbf{C}(\alpha)\mathbf{F} + \mathbf{T}\}$$
(1)

$$\dot{\boldsymbol{\omega}} = -\mathbf{J}^{-1}\widetilde{\boldsymbol{\omega}}\mathbf{J}\boldsymbol{\omega} + \mathbf{J}^{-1}\mathbf{M} + \mathbf{J}^{-1}\mathbf{M}_{u}\mathbf{u}$$
(2)

本制御系は並進制御系と回転制御系に分かれている. 設計した制御系を Fig.1 に示す.初めに並進制御系の設 計方法を示す.位置誤差**x**_eを以下のように定義する.

$$\mathbf{x}_e = \mathbf{x} - \mathbf{x}_c = \begin{bmatrix} x - x_c & y - y_c & z - z_c \end{bmatrix}^T$$
(3)

ここで \mathbf{x} は現在位置, \mathbf{x}_c は目標位置を示す. (3)式を二 階微分し, (1)式を代入してまとめると(4)式となる.

$$\ddot{\mathbf{x}}_{e} = \dot{\mathbf{C}}^{I/B}\mathbf{V} - \mathbf{C}^{I/B}\widetilde{\boldsymbol{\omega}}\mathbf{V} - \mathbf{g} - \frac{1}{m}\mathbf{C}^{I/B}\mathbf{C}(\alpha)\mathbf{F} + \frac{1}{m}\mathbf{T}^{I/B}$$

$$= \mathbf{z}_{t1} + \frac{1}{m}\mathbf{T}^{I/B}$$
(4)

ただし、 \mathbf{z}_{t1} は迎角 α を関数とする空気力を含んだ非線形 項であり、DAC オブザーバ^[2]によりその値を推定する. (4)式に対し、Dynamic inversion (DI) 法を適用することで 線形化を行う.

$$\mathbf{T}_{c}^{I/B} = \mathbf{g}_{t}^{-1}(-\hat{\mathbf{z}}_{t1} + \mathbf{v}_{x})$$
(5)

式(5)において \mathbf{v}_x は新たな制御入力であり、制御ゲインの生成には \mathbf{H}_{∞} 制御器を用いる.推力指令値は推力ベクト

ル
$$\mathbf{T}_{c}^{I/B}$$
の大きさとなる.
 $\bar{T}_{c}(k) = \sqrt{T_{xc}^{2}(k) + T_{yc}^{2}(k) + T_{zc}^{2}(k)}$ (6)

AWC は(7)式および(8)式により示されている. なお(7) 式において κ_{Awc} は定数ゲインである. \bar{T}_c , $\tilde{T}_c(k)$ はそれぞ れ推力指令値とその誤差をフィードバックした値である.

$$T_{c}(k) = \kappa_{Awc_{t}}(T_{c}(k-1) - T(k-1))$$
(7)

$$T(k) = \overline{T}_c(k) + \widetilde{T}_c(k) \tag{8}$$

(5)式の推力方向に機体の姿勢を一致させるため,角度 指令値を生成する.

$$\theta_c = \tan^{-1}\left(\frac{T_z}{T_x}\right), \Psi_c = \sin^{-1}\left(\frac{T_y}{T}\right)$$
(9)

$$\mathbf{q}_{\theta} = \begin{bmatrix} 0 & \sin\left(\frac{\theta_c}{2}\right) & 0 & \cos\left(\frac{\theta_c}{2}\right) \end{bmatrix}^T$$
 (10-a)

$$\mathbf{q}_{\psi} = \begin{bmatrix} 0 & 0 & \sin\left(\frac{\Psi_c}{2}\right) & \cos\left(\frac{\Psi_c}{2}\right) \end{bmatrix}^T$$
(10-b)

$$\mathbf{q}_{c} = \begin{bmatrix} q_{c1} \\ q_{c2} \\ q_{c3} \\ q_{c4} \end{bmatrix} = \begin{bmatrix} q_{\theta 4} & -q_{\theta 3} & q_{\theta 2} & q_{\theta 1} \\ q_{\theta 3} & q_{\theta 4} & -q_{\theta 1} & q_{\theta 2} \\ -q_{\theta 2} & q_{\theta 1} & q_{\theta 4} & q_{\theta 3} \\ -q_{\theta 1} & -q_{\theta 2} & -q_{\theta 3} & q_{\theta 4} \end{bmatrix} \begin{bmatrix} q_{\psi 1} \\ q_{\psi 2} \\ q_{\psi 3} \\ q_{\psi 4} \end{bmatrix}$$
(11)

回転制御系の設計は並進制御系と同様の手法で行う. クォータニオンのキネマティクスを(12)式に示す.また (12)式の一階微分に(2)式を代入し,まとめた式を(13)式に 示す.

$$\dot{\mathbf{q}} = \frac{1}{2} \bar{\mathbf{E}}(\mathbf{q}) \boldsymbol{\omega}, \ \, \bar{\mathbf{E}}(\mathbf{q}) = \begin{bmatrix} q_4 & -q_3 & q_2 \\ q_3 & q_4 & -q_1 \\ -q_2 & q_1 & q_4 \end{bmatrix}$$
(12)

$$\ddot{\mathbf{q}}_e = \mathbf{z}_{r1} + \mathbf{g}_r \mathbf{u} \tag{13}$$

ここで非線形項 \mathbf{z}_{r1} を DAC オブザーバにより推定する. また DI 法を適用する事で航空機の運動の非線形性を打ち消し,線形化を図る.制御ゲインの生成には \mathbf{H}_{∞} 制御器を用い,入力飽和に対しては AWC を適用する.

$$\mathbf{u}_c = \mathbf{g}_r^{-1} \left(-\mathbf{z}_{r1} + \mathbf{v}_q \right) \tag{14}$$

$$\widetilde{\mathbf{u}}_{c}(k) = \kappa_{Awc_{r}}(\overline{\mathbf{u}}_{c}(k-1) - \mathbf{u}(k-1))$$
(15)

$$\mathbf{u}(k) = \overline{\mathbf{u}}_c(k) + \widetilde{\mathbf{u}}_c(k) \tag{16}$$

1:日大理工・学部・航宇 2:日大理工・院・航宇 3:日大理工・教員・航宇

Figure 1. Overview of proposed control system

3. 数値シミュレーション

提案する制御系の有効性を数値シミュレーションによ り確認する. System1 を提案する制御系, System2 は比較 対象の制御系である. System2 に対しては制御ゲインに PD 制御器を適用し、AWC は適用していない.数値シミ ュレーションでは目標位置 $\mathbf{x}_{c} = [100\ 20 - 60]^{T}$ とし, 3.0m/s の風外乱を印加した. Fig.2 から Fig.4 に数値シミ ュレーション結果を示す. Fig.2 より, System1 は System2 よりもスムーズに目標位置に収束している. これは Fig.3 および Fig.4 の比較からも明らかである. 原因として, System2 は外乱や入力の制約を考慮していない為に、制 御系が不安定になったと考えられる.これらの結果より、 提案する制御系の有効性が数値シミュレーションにより 確認できた.

4. 実証実験

提案する制御系の有効性を実証実験により確認する. 数値シミュレーションと同様に提案する制御系を System1, 比較する制御系を System2 としてそれぞれ実験 を行った. Fig.5 に開発した実験装置を, Fig.6 及び Fig.7 に実験結果を示す. Fig.6(a)および Fig.7(a)より System1 は目標位置に収束し、定点で静止しているが、System2 は目標位置に達していない. これは System2 が実験にお いても系が不安になった為と考えられる. これらの結果 より提案する制御系の有効性が実験により確認できた.

(a) Avionics

Figure 5. Developed UAV

5. まとめ

本稿では制御入力の制約を考慮した新たな遷移飛行制 御の手法を提案した. また数値シミュレーションおよび 実証実験の結果より、提案する制御系の有効性が確認で きた.

参考文献

[1] Satoshi Kohno and Kenji Uchiyama, "Design of Robust Controller of Fixed-Wing UAV for Transition Flight", ICUAS, pp.1111-1116, 2014.

[2] Johnson, C.D.: A Family of "Universal Adaptive Controllers" for Linear and Nonlinear Plants, Proceedings of the Twentieth Southeastern Symposium on System Theory, pp.530-534, 1988.