局所円偏光生成のための Au プラズモンアンテナの作製

Nano-fabrication of Au plasmon antenna for concentration of circularly polarized light beyond diffraction limit

○中川諒一1, 芦澤好人2, 中川活二2

*Ryoichi Nakagawa¹, Yoshito Ashizawa², Katsuji Nakagawa²

Abstract: Much attention has been paid to optically induced ultrafast magnetization reversal phenomenon because it can reverse magnetization by just irradiating circularly polarized light without any applied field. It is, however, difficult to condense a spot size of the laser pulse of femtosecond circularly polarized light to nanometer order because of diffraction limit of light. Our solution is a plasmon antenna which can create locally circular polarized light beyond diffraction limit by using a surface plasmon. We nano-fabricated Au plasmon antennas with four-fold symmetry combined with four square patterns by electron beam lithography.

1. はじめに

光誘起磁化反転は、磁気記録媒体に対して磁界を印加せず、円偏光照 射のみによる磁化反転が可能な現象であり、高速に磁化反転が可能であ ることから注目を集めている^[1].光誘起磁化反転現象を磁気記録に応用 することで、媒体の強磁性共鳴周波数を超えた超高速・超高密度磁気記 録を実現できる可能性がある.しかし、光誘起磁化反転現象に用いられ るフェムト秒のパルスレーザーは、光の回折限界により、そのスポット 径を nm サイズの領域まで絞ることが困難である.我々はその問題を解 決するために、表面プラズモンを用いて光の回折限界を超えて局所的に 円偏光を生成するプラズモンアンテナについて、Finite-Difference Time-Domain (FDTD) 法を用いて検討を行ってきた^[2,3].そこで本稿では、 4 回対称性を有する Au プラズモンアンテナの作製について検討を行っ た.

2. 局所円偏光生成のための Au アンテナを用いた電磁界解析

4回対称性を有するAuアンテナを用い,媒体表面上に円偏光が生成可 能であることを円偏光度と電界の強度分布がアンテナの中心に集中して いることを解析することで評価した^[2,3].4回対称アンテナとしてAuア ンテナと粒子媒体とを組み合わせたシミュレーションモデルを Figure 1 に示す.Figure 2(a)の電界強度の分布図(X-Y面)に着目すると中心粒子の 上面が電界強度が高くなっており,Figure 2(b)の円偏光度の分布図(X-Y 面)に着目すると各粒子と比較して中心粒子のみ円偏光度が高く円偏光 が生成されている.その結果,4回対称性アンテナと粒子媒体を組み合 わせることで目標粒子のみに局所的な円偏光が生成可能であることがわ かる.

3. 二層レジストを用いた電子線リソグラフィによるアンテナ作製手法 透過光を集光することから、Au アンテナを製作する基板として透明な ガラス基板を用い、電子線リソグラフィを用いたリフトオフ法により 4 回対称プラズモンアンテナを作製した.以下、アンテナ製作手順を示す (Figure 4). 基板洗浄は、基板表面の有機物除去および水分除去を目的と して、アセトン、エタノールで超音波洗浄を行った.この際、後にコー トするレジストの濡れ性を向上させるために、セミコクリーンによりガ ラス基板のウェットエッチングを行った.その後、スピンコート法によ り電子線レジストを積層しベークした。その後、レジストを電子線描画 装置を用いて描画を行った.電子線照射を行った後、現像液に浸して、 描画部分を現像した.現像後、レジストをマスクとして真空蒸着法によ り Au を成膜した.蒸着のマスクに用いたレジスト及びレジスト上に製

Figure 1. Calculation model of a cross antenna with particle medium.

Figure 2. Spatial maps of intensity (a) and circularity (b) at the medium surface in X-Y plane.

膜された Au 薄膜は、アセトンに2時間浸すことにより、剥離した. 電子線照射量(ドーズ量)、及び、現像時間をパラメータとして、よ り微細な Au プラズモンアンテナの作製を検討した.

4. 電子線リソグラフィにより作製した Au プラズモンアンテナ

4回対称性を有するプラズモンアンテナの作製において、これまで我々が検討してきた近接場光を集中可能な正方形アンテナ^[4]を用いる構造を検討した.1辺が1,000 nmの正方形アンテナを4つ組み合わせて正方形になる配置とし、正方形アンテナの間に10 nm~110 nmの間隙(以後、間隙幅と呼ぶ)を設ける構造とした.プラズモンアンテナの電子線描画パターンをFigure4に示す.計13×10個のプラズモンアンテナを同時に作製可能である.

作製したプラズモンアンテナの SEM 写真を Figure 5 に示す. 一部 のアンテナは剥離しているが, 概ねアンテナは形成されている. 間 隙幅を形成できた Au プラズモンアンテナは, 90 nm, 110 nm の間 隙幅に描画設定したアンテナのみであった. このアンテナを作製し た際の電子線のドーズ量は 100 μ C/cm²であった. 作製に成功した Au プラズモンアンテナの中で最も実際の間隙幅が短く, 先端曲率半 径が小さかったプラズモンアンテナの SEM 像を Figure 6 に示す. 間 隙幅 90 nm に描画設定したプラズモンアンテナで, アンテナ中心の 4 つのエッジの先端曲率半径の平均は約 70 nm, 間隙幅は約 120 nm であった. 間隙幅は描画設定した長さよりも約 30 nm の差があるこ とがわかった.

5. まとめ

表面プラズモンを用いて光の回折限界を超えて局所的にフェムト 秒パルスレーザーにより円偏光を生成する Au アンテナを電子線リ ソグラフィによって作製した.電子線照射量,現像時間について検 討した結果,正方形アンテナを4つ組み合わせる構造において,間 隙幅が約 120 nm のプラズモンアンテナの作製に成功した.

6. 謝辞 本研究の一部は平成 25~28 年度文部科学省私立大学戦略 的研究基盤形成支援事業(S1311020)助成を受けて行った

7. 参考文献

- C. D. Stanciu et al.: "All-Optical Magnetic Recording with Circularly Polarized Light", Phys. Rev. Lett., Vol. 99, pp. 047601-1 – 047601-4, 2007.
- [2] Katsuji Nakagawa, Yoshito Ashizawa, Shinichiro Ohnuki, Akiyoshi Itoh, and Arata Tsukamoto: "Confined circularly polarized light generated by nano-size aperture for high density all-optical magnetic recording", J. Appl. Phys., Vol. 109, pp. 07B735-1 – 07B735-3, 2011.
- [3] T. Ota, Y. Ashizawa, K. Nakagawa, S. Ohnuki, H. Iwamatsu, A. Tsukamoto, and A. Itoh: "Dependence of Circularly Polarized Light Excited by Plasmon Aperture on Relative Position Magnetic Particles for All-Optical Magnetic Recording", J. Magn. Soc. Jpn,. Vol. 36, No.1-2, pp. 66 69, 2012.
- [4] 林 慶彦,田村京介,眞野敬史,芦澤好人,大貫進一郎,中川 活二:「熱アシスト磁気記録のための磁気記録媒体上の正方形ア ンテナによる近接場光および熱伝導解析」,第37回 日本磁気学会 学術講演会概要集 2013, p207, 2013.

Figure 3. Schematic view of antenna nano-fabrication process using electron beam lithography method.

※横一列は全て同じ線幅 110nm	
110nm	
90nm	
70nm	
50nm	
30nm	
20nm	
10nm	
90nm	
70nm	
50nm	
30nm	
20nm	
10nm	

Figure 4. Schematic view of e-beam pattern. Gap distance between neighboring square patterns is varied from 10 to 110 nm.

Figure 5. SEM image of nano-fabricated Au plasmon antennas.

Figure 6. SEM image of a plasmon antenna with a gap distance of 90 nm.