回転磁場による磁気プラズマセイルの推進力の評価

Evaluated of thrust force of magnetic plasma sail by rotating magnetic field

○宮本靖孝¹, 加藤達也¹, 佐原純輝¹, 小俣智康², 浅井朋彦³, 井通暁⁴ Yasutaka Miyamoto¹, Tatuya Kato¹, Junki Sahara¹, Tomoyasu Omata¹ Tomohiko Asai², Mitiaki Inomoto²

Abstract: The magnetic plasma sail is a space propulsion method obtaining a thrust force by from the solar wind onto the expanded through the magnetized plasma sail. In this study, the plasma sail is formed by a rotating magnetic field (RMF) method. Principle of the system has been evaluated by using a simulated solar wind formed by a coaxial plasma gun. The thrust force onto the plasma sail has been evaluated by the high-speed camera for the first time.

1.背景・目的

宇宙空間を航行するのに必要な推進器にはさまざま な方式がある.中でも、太陽から放射されるエネルギ ーを利用した航法は、推進剤を必要としないため機体 総重量に対してペイロード(観測機材等)を多くする 事ができるメリットがある.太陽から放射されるエネ ルギーを利用した一般的な推進法の中に磁気プラズマ セイルがある.磁気プラズマセイルとは、帆船が風を 受けて進むように、宇宙空間において磁場(セイル磁 場)を展開し太陽風を受け止めることにより、推進力 を得る宇宙推進法である.また太陽から遠ざかるにつ れて太陽風の密度は低下するが、磁化プラズマをセイ ルとする方式では、外部のプラズマ圧と釣り合うサイ ズにセイルが膨張するため、推進力を一定に保てると いう特徴を持つ.

本研究では、太陽風を受け止めるための帆であるセ イル磁場の展開を回転磁場(Rotating Magnetized Field:RMF)を用いて行う推進方式を採用、この開発を 進めている.これまでに、RMF 駆動用のインバータ回 路を開発しセイル磁場展開の研究が行われてきたが、 今回は、太陽風との相互作用による推進力の測定し、 RMF プラズマセイルの原理検証実験を進めた.このた め、同軸プラズマガンを用いて模擬太陽風を生成、推 進器(アンテナ)に向けて射出することで推進力を発 生させ、アンテナの動きを高速度カメラを用いて撮影 し、変化量から推進力の測定を試みた.

2. 実験装置

(1) RMF

セイル磁場の展開には回転磁場を使用する RMF 法 を用いている. プラズマ中に回転磁場を印加すると, 電子とイオンのサイクロトロン周波数の違いから,電 子が回転磁場に追従し円環電流が生成される.

$$\omega_{ci} << \omega_{RMF} << \omega_{ce} \tag{1}$$

本研究では、RMF 法における回転磁場の生成に IGBT ブリッジ回路を用いている. IGBT のペア2組を交互に 動作させることで交流波形を生成するインバータ回路 となっており、この回路を3つ使用し、位相差がそれ ぞれ 120°となるように動作開始を遅らせることで合 成磁場が回転し、RMFを展開している.現在、IGBT フ ルブリッジ回路の電流値は120V 充電で120A、周波数 は 250kHz の出力が得られている.

Figure 1. Mechanism of current drive by RMF. Arrows indicate directions of (a) the rotating field, (b) the electron motion and (c) the driven current.

Figure 2. Schematic view of RMF power circuit. The direction of the current onto the antenna is alternately switched.

1:日大理工・院(前)・物理 2:日大理工・学部・物理 3:理工学部・教員・物理 4:東京大学

Figure 3. Output current of the RMF power circuit; a) overall view and b) enlarged view.

Figure 4. Schematic layout of the coaxial plasma gun.

Figure 5. Discharge current and the voltage between the electrodes of the coaxial plasma gun.

(2) 同軸プラズマガン

模擬太陽風の生成には同軸プラズマガンを用いてい る。同軸プラズマガンは、電極間に動作ガスを導入し、 放電することでプラズマを生成する. 放電により流れ る径方向の電流と、電極に流れる電流による方位角方 向の磁場によって自己ローレンツ力が発生し、プラズ モイドは軸方向に電磁加速される. 本研究では、コン デンサに3kV 充電を行い、放電のタイミングは RMF の駆動開始から 0.45ms 後としている.

3. 実験結果

推進力の測定には高速度カメラを用いており, 模擬 太陽風の射出軸に対して垂直方向から, アンテナの側 面が撮影できるように設置している. アンテナとバッ クスクリーンとの光強度から, アンテナの移動距離を 割り出している. RMF を展開している場合と模擬太陽 風のみの場合を比較すると, RMF を展開している方が 80μm ほど進んでいる事が確認された. アンテナはチ ェンバー上部から長さ 0.3m のワイヤーで吊るされて おり, アンテナの振動角は小さいと仮定すると(2)式と なる. これより推進力を求めると, 約13μN となる.

$$F = -mg\sin(\frac{x}{l}) \tag{2}$$

Figure 6. Discharge current and the antenna current at the driving force measurement.

Figure 7. Distribution of light intensity taken by the high-speed camera.

4. 今後の課題

高速度カメラによる推進力の発生を確認することが できた. 今後, 模擬太陽風や RMF のパラメータを変化 させた場合の推進力の変化の測定を試みる. また現在 模擬太陽風の動作ガスとしてアルゴンを用いており, 実際の太陽風とのスケールを比較し, 宇宙空間におい て実際に得られる推進力の算出を試みる.

5. 参考文献

[1] John Slough : "Plasma Sail Propulsion Based on the Plasma Magnet." 30th International Electric Propulsion Conference. 2007.

[2] 上野一磨 他:「磁気セイルの推力特性に関する実 験研究」Vol.59, No.692, pp. 229-235, 2011.